Processing math: 25%

Lie algebra E16
Semisimple complex Lie subalgebras

E16
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
Up to linear equivalence, there are total 119 semisimple subalgebras (including the full subalgebra). The subalgebras are ordered by rank, Dynkin indices of simple constituents and dimensions of simple constituents.
The upper index indicates the Dynkin index, the lower index indicates the rank of the subalgebra.
1. A112. A213. A314. A415. A516. A61
7. A818. A919. A10110. A11111. A12112. A201
13. A21114. A28115. A30116. A35117. A36118. A601
19. A84120. A156121. 2A1122. A21+A1123. 2A2124. A31+A11
25. A31+A2126. 2A3127. A41+A1128. A41+A2129. 2A4130. A51+A11
31. A51+A4132. 2A6133. A81+A1134. A81+A3135. A81+A4136. A91+A31
37. A101+A1138. A101+A2139. 2A10140. A111+A1141. A201+A1142. A281+A21
43. A281+A8144. A351+A1145. A1246. B1247. G1248. A22
49. A2250. B2251. A3252. A3253. B3254. G32
55. A5256. A9257. 3A1158. A21+2A1159. 2A21+A1160. 3A21
61. A31+A21+A1162. A41+2A1163. 2A41+A1164. 3A4165. A81+A31+A1166. A101+2A11
67. A12+A1168. A12+A2169. A12+A4170. A12+A5171. A12+A8172. B12+A11
73. B12+A2174. B12+A10175. G12+A2176. G12+A8177. A22+A1178. A22+A11
79. A22+A3180. A22+A4181. A22+A4182. A22+A28183. B22+A1184. A52+A11
85. A1386. B1387. C1388. A2389. 4A1190. 2A21+2A11
91. A12+2A1192. A12+A41+A1193. A12+2A4194. 2A1295. B12+2A1196. 2B12
97. A22+A31+A1198. A22+A1299. A22+A12100. A22+G12101. A13+A11102. A13+A21
103. B13+A21104. C13+A11105. A23+A11106. A14107. D14108. B14
109. C14110. F14111. 2A12+A11112. 2A12+A41113. A13+2A11114. A14+A11
115. A15116. D15117. 3A12118. A15+A11119. E16

Generation comments.
Computation time in seconds: 14146.8.
1885412174 total arithmetic operations performed = 1569905347 additions and 315506827 multiplications.
The base field over which the subalgebras were realized is: Q[1,3,7]
Number of root subalgebras other than the Cartan and full subalgebra: 19
Number of sl(2)'s: 20
Subalgebra A11E16
1 out of 119
Subalgebra type: A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: A15 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A11
Basis of Cartan of centralizer: 5 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: 2A11 , A21+A11 , A31+A11 , A41+A11 , A51+A11 , A81+A11 , A101+A11 , A111+A11 , A201+A11 , A351+A11 , 3A11 , A21+2A11 , 2A21+A11 , A31+A21+A11 , A41+2A11 , 2A41+A11 , A81+A31+A11 , A101+2A11 , A12+A11 , B12+A11 , A22+A11 , A22+A11 , B22+A11 , A52+A11 , 4A11 , 2A21+2A11 , A12+2A11 , A12+A41+A11 , B12+2A11 , A22+A31+A11 , A13+A11 , C13+A11 , A23+A11 , 2A12+A11 , A13+2A11 , A14+A11 , A15+A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (1, 2, 2, 3, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g36
Positive simple generators: g36
Cartan symmetric matrix: (2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2)
Decomposition of ambient Lie algebra: V2ω120Vω135V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ψ1+2ψ5Vω1+2ψ12ψ3+2ψ5Vω1+2ψ12ψ2+2ψ32ψ4+2ψ5Vω1+2ψ22ψ4+2ψ5Vω1+2ψ12ψ2+2ψ4Vω1+2ψ22ψ3+2ψ4Vω1+2ψ3V2ψ4+4ψ5V2ψ3+2ψ4+2ψ5V2ψ2+2ψ3+2ψ5V2ψ1+2ψ2+2ψ5V2ω1V4ψ12ψ2V2ψ1+2ψ22ψ3V2ψ1+2ψ32ψ4V2ψ1+2ψ42ψ5Vω12ψ2+2ψ5Vω12ψ1+2ψ22ψ3+2ψ5Vω12ψ1+2ψ32ψ4+2ψ5Vω12ψ1+2ψ4Vω1+2ψ12ψ4Vω1+2ψ12ψ3+2ψ42ψ5Vω1+2ψ12ψ2+2ψ32ψ5Vω1+2ψ22ψ5V2ψ12ψ22ψ4+2ψ5V2ψ22ψ32ψ4+2ψ5V2ψ34ψ4+2ψ5V2ψ12ψ22ψ3+2ψ4V2ψ24ψ3+2ψ4V2ψ14ψ2+2ψ35V0V2ψ1+4ψ22ψ3V2ψ2+4ψ32ψ4V2ψ1+2ψ2+2ψ32ψ4V2ψ3+4ψ42ψ5V2ψ2+2ψ3+2ψ42ψ5V2ψ1+2ψ2+2ψ42ψ5Vω12ψ3Vω12ψ2+2ψ32ψ4Vω12ψ1+2ψ22ψ4Vω12ψ2+2ψ42ψ5Vω12ψ1+2ψ22ψ3+2ψ42ψ5Vω12ψ1+2ψ32ψ5V2ψ12ψ4+2ψ5V2ψ12ψ3+2ψ4V2ψ12ψ2+2ψ3V4ψ1+2ψ2V2ψ12ψ22ψ5V2ψ22ψ32ψ5V2ψ32ψ42ψ5V2ψ44ψ5V2ψ12ψ5
Made total 282 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A21E16
2 out of 119
Subalgebra type: A21 (click on type for detailed printout).
Centralizer: B13 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A21
Basis of Cartan of centralizer: 4 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A21+A11 , 2A21 , A31+A21 , A41+A21 , A101+A21 , A281+A21 , A21+2A11 , 2A21+A11 , 3A21 , A31+A21+A11 , A12+A21 , B12+A21 , G12+A21 , 2A21+2A11 , A13+A21 , B13+A21 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 2, 3, 4, 3, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g30+g34
Positive simple generators: g34+g30
Cartan symmetric matrix: (1)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4)
Decomposition of ambient Lie algebra: 8V2ω116Vω122V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ψ2+2ψ3+2ψ4Vω1+2ψ1+2ψ3+2ψ4V2ψ1+2ψ2+4ψ32ψ4V2ω1+2ψ2+4ψ32ψ4Vω12ψ1+2ψ2+2ψ3+2ψ4Vω1+2ψ3+2ψ4V2ω1+2ψ1V2ψ1+4ψ2+4ψ32ψ4V2ψ2+4ψ32ψ4V2ψ1+4ψ32ψ4Vω12ψ3+4ψ4Vω1+2ψ12ψ22ψ3+4ψ4V2ψ2V2ω12ψ1+2ψ2V2ψ12V2ω1V4ψ12ψ2V2ω1+2ψ12ψ2V2ψ1+2ψ2+4ψ32ψ4Vω12ψ12ψ3+4ψ4Vω12ψ22ψ3+4ψ4Vω1+2ψ2+2ψ34ψ4Vω1+2ψ1+2ψ34ψ4V2ψ1+2ψ24V0V2ω12ψ1V2ψ12ψ2Vω12ψ1+2ψ2+2ψ34ψ4Vω1+2ψ34ψ4V2ψ12ψ24ψ3+2ψ4V2ω12ψ24ψ3+2ψ4V4ψ1+2ψ2V2ψ1V2ψ2Vω12ψ32ψ4Vω1+2ψ12ψ22ψ32ψ4V2ψ14ψ3+2ψ4V2ψ24ψ3+2ψ4V2ψ14ψ24ψ3+2ψ4Vω12ψ12ψ32ψ4Vω12ψ22ψ32ψ4V2ψ12ψ24ψ3+2ψ4
Made total 6531159 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A31E16
3 out of 119
Subalgebra type: A31 (click on type for detailed printout).
Centralizer: A22+A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A31
Basis of Cartan of centralizer: 3 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A31+A11 , A31+A21 , 2A31 , A81+A31 , A91+A31 , A31+A21+A11 , A81+A31+A11 , A22+A31 , A22+A31+A11 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g23+g30+g34
Positive simple generators: g34+g30+g23
Cartan symmetric matrix: (2/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6)
Decomposition of ambient Lie algebra: 2V3ω19V2ω116Vω111V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ψ1+2ψ2+2ψ3V2ω1+2ψ2+2ψ3Vω1+2ψ12ψ2+4ψ3V3ω1+2ψ1Vω1+2ψ1+4ψ22ψ3V2ω12ψ2+4ψ3V2ψ2+2ψ3V4ψ1V2ω1+4ψ22ψ3Vω12ψ1+2ψ2+2ψ32Vω1+2ψ1V2ψ2+4ψ33V2ω1V4ψ22ψ3Vω12ψ12ψ2+4ψ3Vω1+2ψ14ψ2+2ψ3V3ω12ψ1Vω12ψ1+4ψ22ψ3Vω1+2ψ1+2ψ24ψ3V2ω14ψ2+2ψ33V0V2ω1+2ψ24ψ32Vω12ψ1Vω1+2ψ12ψ22ψ3V4ψ2+2ψ3V2ω12ψ22ψ3V2ψ24ψ3Vω12ψ14ψ2+2ψ3Vω12ψ1+2ψ24ψ3V4ψ1V2ψ22ψ3Vω12ψ12ψ22ψ3
Made total 5853604 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A41E16
4 out of 119
Subalgebra type: A41 (click on type for detailed printout).
Centralizer: 2A12 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A12
Basis of Cartan of centralizer: 4 vectors: (0, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A41+A11 , A41+A21 , 2A41 , A51+A41 , A81+A41 , A41+2A11 , 2A41+A11 , 3A41 , A12+A41 , A22+A41 , A22+A41 , A12+A41+A11 , A12+2A41 , 2A12+A41 .

Elements Cartan subalgebra scaled to act by two by components: A41: (2, 4, 4, 6, 4, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g23+g27
Positive simple generators: 2g27+2g23
Cartan symmetric matrix: (1/2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (8)
Decomposition of ambient Lie algebra: V4ω119V2ω116V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ψ2+2ψ3+4ψ4V2ω1+2ψ3+4ψ4V2ω12ψ1+4ψ2+4ψ4V2ω12ψ1+2ψ2+2ψ3+2ψ4V2ω1+2ψ1+2ψ4V2ψ1+2ψ2+4ψ4V2ψ2+4ψ3+2ψ4V2ω12ψ1+2ψ3+2ψ4V4ψ22ψ3+2ψ4V2ω1+2ψ22ψ3+2ψ4V2ω1+2ψ12ψ2+2ψ3V2ω1+2ψ2V4ω1V4ψ1+4ψ2+2ψ4V2ψ12ψ2+2ψ4V2ω1+2ψ14ψ2+2ψ3V2ω1V2ω12ψ1+4ψ22ψ34V0V2ω12ψ2V2ω12ψ1+2ψ22ψ3V2ω12ψ2+2ψ32ψ4V2ω1+2ψ12ψ32ψ4V2ψ1+2ψ22ψ4V2ω12ψ12ψ4V4ψ14ψ22ψ4V2ω1+2ψ12ψ22ψ32ψ4V4ψ2+2ψ32ψ4V2ψ24ψ32ψ4V2ψ12ψ24ψ4V2ω1+2ψ14ψ24ψ4V2ω12ψ34ψ4V2ψ22ψ34ψ4
Made total 45203957 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A51E16
5 out of 119
Subalgebra type: A51 (click on type for detailed printout).
Centralizer: A12 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: 2A12
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0), (1, 0, 0, 2, 0, -1)
Contained up to conjugation as a direct summand of: A51+A11 , A51+A41 , A12+A51 .

Elements Cartan subalgebra scaled to act by two by components: A51: (3, 4, 5, 7, 5, 3): 10
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g22+g24+g28
Positive simple generators: 2g28+g24+2g22
Cartan symmetric matrix: (2/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (10)
Decomposition of ambient Lie algebra: V4ω16V3ω18V2ω18Vω19V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω12ψ1+2ψ2+8ψ3V3ω1+2ψ2+4ψ3V2ψ1+4ψ2+6ψ3Vω1+6ψ3Vω1+2ψ2+4ψ3V2ω1+2ψ1+2ψ3V3ω12ψ1+4ψ3V3ω12ψ1+2ψ2+2ψ3V4ψ1+2ψ2+6ψ3V2ψ1+2ψ2V4ω1Vω12ψ1+4ψ3Vω12ψ1+2ψ2+2ψ3V2ω12ψ2+2ψ32V2ω1V2ω1+2ψ22ψ3V3ω1+2ψ12ψ22ψ3V3ω1+2ψ14ψ33V0Vω1+2ψ12ψ22ψ3Vω1+2ψ14ψ3V2ω12ψ12ψ3V3ω12ψ24ψ3V2ψ12ψ2V4ψ12ψ26ψ3Vω12ψ24ψ3Vω16ψ3V2ω1+2ψ12ψ28ψ3V2ψ14ψ26ψ3
Made total 9538973 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A61E16
6 out of 119
Subalgebra type: A61 (click on type for detailed printout).
Centralizer: A61 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A61
Basis of Cartan of centralizer: 2 vectors: (1, -1, 1, -1, -1, 0), (1, -2, 0, -2, 0, 1)
Contained up to conjugation as a direct summand of: 2A61 .

Elements Cartan subalgebra scaled to act by two by components: A61: (3, 4, 6, 8, 6, 3): 12
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g15+g22+g25+g30
Positive simple generators: 2g30+g25+g22+2g15
Cartan symmetric matrix: (1/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (12)
Decomposition of ambient Lie algebra: 3V4ω14V3ω19V2ω18Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+4ψ1+8ψ2Vω1+6ψ1+6ψ2V4ω1+2ψ1+4ψ2V3ω1+4ψ1+2ψ22V2ω1+2ψ1+4ψ2Vω1+6ψ2Vω1+4ψ1+2ψ2V2ψ1+4ψ2V4ω1V3ω12ψ1+2ψ2V3ω1+2ψ12ψ23V2ω1Vω12ψ1+2ψ2Vω1+2ψ12ψ22V0V4ω12ψ14ψ2V3ω14ψ12ψ22V2ω12ψ14ψ2Vω14ψ12ψ2Vω16ψ2V2ψ14ψ2V2ω14ψ18ψ2Vω16ψ16ψ2
Made total 220476270 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A81E16
7 out of 119
Subalgebra type: A81 (click on type for detailed printout).
Centralizer: G12 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A22
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 1, 0)
Contained up to conjugation as a direct summand of: A81+A11 , A81+A31 , A81+A41 , A281+A81 , A81+A31+A11 , A12+A81 , G12+A81 .

Elements Cartan subalgebra scaled to act by two by components: A81: (4, 4, 6, 8, 6, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g7+g11+g26+g28
Positive simple generators: 2g28+2g26+2g11+2g7
Cartan symmetric matrix: (1/4)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (16)
Decomposition of ambient Lie algebra: 8V4ω18V2ω114V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+2ψ2V4ω1+2ψ1V2ψ1+2ψ2V2ω1+2ψ2V4ω12ψ1+2ψ2V2ω1+2ψ12V4ω1V4ω1+2ψ12ψ2V2ψ1+4ψ2V2ψ2V2ω12ψ1+2ψ2V2ψ12V2ω1V4ω12ψ1V4ψ12ψ2V2ω1+2ψ12ψ2V4ω12ψ2V2ψ1+2ψ22V0V2ω12ψ1V2ψ12ψ2V2ω12ψ2V4ψ1+2ψ2V2ψ1V2ψ2V2ψ14ψ2V2ψ12ψ2
Made total 22819045 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A91E16
8 out of 119
Subalgebra type: A91 (click on type for detailed printout).
Centralizer: A31 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A22+A11
Basis of Cartan of centralizer: 1 vectors: (0, 1, -1, 0, -1, 0)
Contained up to conjugation as a direct summand of: A91+A31 .

Elements Cartan subalgebra scaled to act by two by components: A91: (4, 5, 7, 10, 7, 4): 18
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g12+g16+g22+g23+g25
Positive simple generators: 2g25+g23+2g22+2g16+2g12
Cartan symmetric matrix: (2/9)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (18)
Decomposition of ambient Lie algebra: 2V5ω14V4ω14V3ω15V2ω16Vω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+4ψVω1+6ψV5ω1+2ψV2ω1+4ψ2V3ω1+2ψV4ψ2V4ω12Vω1+2ψV5ω12ψ3V2ω12V3ω12ψV0V4ω14ψ2Vω12ψV2ω14ψV4ψVω16ψ
Made total 3644384 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A101E16
9 out of 119
Subalgebra type: A101 (click on type for detailed printout).
Centralizer: B12 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: B12
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A101+A11 , A101+A21 , 2A101 , A101+2A11 , B12+A101 .

Elements Cartan subalgebra scaled to act by two by components: A101: (4, 6, 7, 10, 7, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g8+g19+g24
Positive simple generators: 4g24+3g19+3g8
Cartan symmetric matrix: (1/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20)
Decomposition of ambient Lie algebra: V6ω15V4ω18V3ω1V2ω111V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V3ω1+2ψ1+2ψ2+2ψ3V4ω1+2ψ1+4ψ22ψ3V3ω1+2ψ2+2ψ3V4ω1+2ψ1V6ω1V4ψ1+4ψ22ψ3V3ω12ψ2+4ψ3V4ω1V2ψ1+4ψ22ψ3V3ω12ψ12ψ2+4ψ3V3ω1+2ψ1+2ψ24ψ3V2ψ1V2ω1V4ω12ψ1V4ψ22ψ3V3ω1+2ψ24ψ3V4ω12ψ14ψ2+2ψ33V0V3ω12ψ22ψ3V4ψ2+2ψ3V2ψ1V3ω12ψ12ψ22ψ3V2ψ14ψ2+2ψ3V4ψ14ψ2+2ψ3
Made total 4613803 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A111E16
10 out of 119
Subalgebra type: A111 (click on type for detailed printout).
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0, 0), (2, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: A111+A11 .

Elements Cartan subalgebra scaled to act by two by components: A111: (4, 6, 8, 11, 8, 4): 22
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g13+g14+g15+g24
Positive simple generators: 4g24+g15+3g14+3g13
Cartan symmetric matrix: (2/11)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (22)
Decomposition of ambient Lie algebra: V6ω12V5ω13V4ω16V3ω14V2ω12Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V3ω1+2ψ1+6ψ2V4ω1+6ψ2V2ω1+6ψ2V3ω12ψ1+6ψ2V5ω1+2ψ1V6ω1V3ω1+2ψ1V4ψ1V4ω1Vω1+2ψ1V5ω12ψ12V2ω1V3ω12ψ12V0Vω12ψ1V3ω1+2ψ16ψ2V4ω16ψ2V4ψ1V2ω16ψ2V3ω12ψ16ψ2
Made total 2168003 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A121E16
11 out of 119
Subalgebra type: A121 (click on type for detailed printout).
Centralizer: T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: A121: (4, 6, 8, 12, 8, 4): 24
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g42g15+g19+g27
Positive simple generators: 4g27+g24+2g19g15+4g8+4g4
Cartan symmetric matrix: (1/6)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (24)
Decomposition of ambient Lie algebra: 2V6ω17V4ω19V2ω12V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+2ψ1+2ψ2V4ω12ψ1+4ψ2V2ω1+2ψ1+2ψ22V6ω1V4ω1+4ψ12ψ2V2ω12ψ1+4ψ2V4ω1V2ω1+4ψ12ψ2V4ω14ψ1+2ψ23V2ω1V4ω1+2ψ14ψ2V2ω14ψ1+2ψ22V0V4ω12ψ12ψ2V2ω1+2ψ14ψ2V2ω12ψ12ψ2
Made total 583010629 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A201E16
12 out of 119
Subalgebra type: A201 (click on type for detailed printout).
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 1, 0, 0), (1, 0, -1, 0, 1, -1)
Contained up to conjugation as a direct summand of: A201+A11 .

Elements Cartan subalgebra scaled to act by two by components: A201: (6, 8, 10, 14, 10, 6): 40
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g7+g8+g16+g19
Positive simple generators: 4g19+6g16+4g8+6g7
Cartan symmetric matrix: (1/10)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (40)
Decomposition of ambient Lie algebra: V8ω15V6ω13V4ω15V2ω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+6ψ2V6ω12ψ1+6ψ2V6ω1+2ψ1V8ω1V2ω12ψ1+6ψ2V6ω1V2ω1+2ψ1V4ω1V6ω12ψ1V4ψ1+6ψ2V2ω1V6ω1+2ψ16ψ22V0V2ω12ψ1V4ψ16ψ2V2ω1+2ψ16ψ2V4ω16ψ2
Made total 17521203 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A211E16
13 out of 119
Subalgebra type: A211 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 3, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: A211: (6, 8, 11, 15, 11, 6): 42
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g7+g13+g14+g15+g16
Positive simple generators: 6g16+g15+4g14+4g13+6g7
Cartan symmetric matrix: (2/21)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (42)
Decomposition of ambient Lie algebra: V8ω12V7ω1V6ω12V5ω13V4ω12V3ω12V2ω12Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+12ψV7ω1+6ψV5ω1+6ψV3ω1+6ψV8ω1Vω1+6ψV6ω1V4ω12V2ω1V7ω16ψV0V5ω16ψV3ω16ψVω16ψV4ω112ψ
Made total 2116053 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A281E16
14 out of 119
Subalgebra type: A281 (click on type for detailed printout).
Centralizer: A22 .
The semisimple part of the centralizer of the semisimple part of my centralizer: G12
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A281+A21 , A281+A81 , A22+A281 .

Elements Cartan subalgebra scaled to act by two by components: A281: (6, 10, 12, 18, 12, 6): 56
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g2+g4+g15+g24
Positive simple generators: 6g24+6g15+6g4+10g2
Cartan symmetric matrix: (1/14)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (56)
Decomposition of ambient Lie algebra: V10ω18V6ω1V2ω18V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1+2ψ1+2ψ2V10ω1V6ω12ψ1+4ψ2V6ω1+4ψ12ψ22V6ω1V2ψ1+2ψ2V6ω14ψ1+2ψ2V6ω1+2ψ14ψ2V2ψ1+4ψ2V2ω1V4ψ12ψ2V6ω12ψ12ψ22V0V4ψ1+2ψ2V2ψ14ψ2V2ψ12ψ2
Made total 9668148 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A301E16
15 out of 119
Subalgebra type: A301 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: A301: (7, 10, 13, 18, 13, 7): 60
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g2+g7+1/2g12+g15+g16
Positive simple generators: 7g16+6g15+10g12+g1110g8+2g7+10g2
Cartan symmetric matrix: (1/15)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (60)
Decomposition of ambient Lie algebra: V10ω1V8ω12V7ω12V6ω12V5ω1V4ω12V2ω12Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V7ω1+6ψV5ω1+6ψV10ω1V8ω1Vω1+6ψ2V6ω1V4ω12V2ω1V7ω16ψV0V5ω16ψVω16ψ
Made total 2337651 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A351E16
16 out of 119
Subalgebra type: A351 (click on type for detailed printout).
Centralizer: A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: A351+A11 .

Elements Cartan subalgebra scaled to act by two by components: A351: (8, 10, 14, 19, 14, 8): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g6+g13+g14+g15
Positive simple generators: 9g15+5g14+5g13+8g6+8g1
Cartan symmetric matrix: (2/35)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (70)
Decomposition of ambient Lie algebra: V10ω12V9ω1V8ω1V6ω12V5ω1V4ω12V3ω1V2ω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V9ω1+2ψV10ω1V8ω1V5ω1+2ψV9ω12ψV6ω1V3ω1+2ψV4ψV4ω1V5ω12ψV2ω1V3ω12ψV0V4ψ
Made total 59553 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A361E16
17 out of 119
Subalgebra type: A361 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: E16

Elements Cartan subalgebra scaled to act by two by components: A361: (8, 10, 14, 20, 14, 8): 72
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g6+g8+g9+g10+g19
Positive simple generators: 9g19+5g10+5g9+g8+8g6+8g1
Cartan symmetric matrix: (1/18)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (72)
Decomposition of ambient Lie algebra: 2V10ω12V8ω12V6ω13V4ω13V2ω1
Made total 14218918 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A601E16
18 out of 119
Subalgebra type: A601 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: A601: (10, 14, 18, 26, 18, 10): 120
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g4+g6+g15
Positive simple generators: 18g15+10g6+8g4+14g2+10g1
Cartan symmetric matrix: (1/30)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (120)
Decomposition of ambient Lie algebra: V14ω13V10ω1V8ω1V6ω12V4ω1V2ω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V10ω1+6ψV14ω1V4ω1+6ψV10ω1V8ω1V6ω1V10ω16ψV2ω1V0V4ω16ψ
Made total 3102109 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A841E16
19 out of 119
Subalgebra type: A841 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: E16

Elements Cartan subalgebra scaled to act by two by components: A841: (12, 16, 22, 30, 22, 12): 168
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g3+g6+g9+g10
Positive simple generators: 22g10+8g98g8+12g6+14g5+14g3+16g2+12g1
Cartan symmetric matrix: (1/42)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (168)
Decomposition of ambient Lie algebra: V16ω1V14ω12V10ω1V8ω1V6ω1V4ω1V2ω1
Made total 3582365 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A1561E16
20 out of 119
Subalgebra type: A1561 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: E16

Elements Cartan subalgebra scaled to act by two by components: A1561: (16, 22, 30, 42, 30, 16): 312
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g3+g4+g5+g6
Positive simple generators: 16g6+30g5+42g4+30g3+22g2+16g1
Cartan symmetric matrix: (1/78)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (312)
Decomposition of ambient Lie algebra: V22ω1V16ω1V14ω1V10ω1V8ω1V2ω1
Made total 129084 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A11E16
21 out of 119
Subalgebra type: 2A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A11 .
Centralizer: A13 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: 2A11
Basis of Cartan of centralizer: 4 vectors: (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: 3A11 , A21+2A11 , A41+2A11 , A101+2A11 , 4A11 , 2A21+2A11 , A12+2A11 , B12+2A11 , A13+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (1, 2, 2, 3, 2, 1): 2, A11: (1, 0, 1, 1, 1, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g36, g24
Positive simple generators: g36, g24
Cartan symmetric matrix: (2002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2002)
Decomposition of ambient Lie algebra: V2ω26Vω1+ω2V2ω18Vω28Vω116V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+2ψ3+4ψ4Vω12ψ2+2ψ3+4ψ4Vω12ψ1+2ψ2+4ψ4Vω1+2ψ1+2ψ4V2ψ2+4ψ3+2ψ4V2ψ1+2ψ2+2ψ3+2ψ4Vω1+ω22ψ1+2ψ3+2ψ4V2ψ1+2ψ3Vω1+ω2+2ψ12ψ2+2ψ3Vω1+ω2+2ψ2Vω22ψ1+4ψ4Vω2+2ψ12ψ2+2ψ4Vω2+2ψ22ψ3+2ψ4V2ω2V2ω1Vω12ψ3+2ψ4Vω1+2ψ32ψ4V2ψ12ψ2+2ψ3+2ψ4V4ψ1+2ψ2+2ψ4V2ψ14ψ2+2ψ34V0Vω1+ω22ψ2V2ψ1+4ψ22ψ3Vω1+ω22ψ1+2ψ22ψ3V4ψ12ψ22ψ4V2ψ1+2ψ22ψ32ψ4Vω1+ω2+2ψ12ψ32ψ4Vω22ψ2+2ψ32ψ4Vω22ψ1+2ψ22ψ4Vω2+2ψ14ψ4Vω12ψ12ψ4Vω1+2ψ12ψ24ψ4Vω1+2ψ22ψ34ψ4V2ψ12ψ3V2ψ12ψ22ψ32ψ4V2ψ24ψ32ψ4Vω22ψ34ψ4
Made total 373 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A21+A11E16
22 out of 119
Subalgebra type: A21+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A21 .
Centralizer: A21+A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A21+A11
Basis of Cartan of centralizer: 3 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A21+2A11 , 2A21+A11 , A31+A21+A11 , 2A21+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 2, 3, 4, 3, 2): 4, A11: (0, 1, 1, 2, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g30+g34, g23
Positive simple generators: g34+g30, g23
Cartan symmetric matrix: (1002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4002)
Decomposition of ambient Lie algebra: 2V2ω1+ω2V2ω24Vω1+ω24V2ω16Vω28Vω17V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ψ1+2ψ2+2ψ3Vω1+ω2+2ψ2+2ψ3Vω1+2ψ12ψ2+4ψ3V2ω1+ω2+2ψ1Vω2+2ψ1+4ψ22ψ3Vω1+ω22ψ2+4ψ3V4ψ1V2ω1+4ψ22ψ3Vω12ψ1+2ψ2+2ψ3Vω2+2ψ1V2ω22V2ω1V4ψ22ψ3Vω12ψ12ψ2+4ψ3Vω2+2ψ14ψ2+2ψ3V2ω1+ω22ψ1Vω22ψ1+4ψ22ψ3Vω1+2ψ1+2ψ24ψ3V2ω14ψ2+2ψ33V0Vω1+ω2+2ψ24ψ3Vω22ψ1Vω1+2ψ12ψ22ψ3V4ψ2+2ψ3Vω1+ω22ψ22ψ3Vω22ψ14ψ2+2ψ3Vω12ψ1+2ψ24ψ3V4ψ1Vω12ψ12ψ22ψ3
Made total 630 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A21E16
23 out of 119
Subalgebra type: 2A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A21 .
Centralizer: 2A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A13
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: 2A21+A11 , 3A21 , 2A21+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 2, 3, 4, 3, 2): 4, A21: (0, 2, 1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g30+g34, g8+g19
Positive simple generators: g34+g30, g19+g8
Cartan symmetric matrix: (1001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4004)
Decomposition of ambient Lie algebra: V2ω1+2ω25V2ω28Vω1+ω25V2ω17V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω2+2ψ1+2ψ2+2ψ3Vω1+ω2+2ψ2+2ψ3V4ψ1+4ψ22ψ3V2ω2+2ψ1+4ψ22ψ3V2ω1+2ψ1+4ψ22ψ3Vω1+ω22ψ2+4ψ3V2ω2+2ψ1V2ω1+2ψ1V2ω1+2ω2Vω1+ω22ψ12ψ2+4ψ3V2ω2V2ω1V4ψ22ψ3Vω1+ω2+2ψ1+2ψ24ψ33V0V2ω22ψ1V2ω12ψ1Vω1+ω2+2ψ24ψ3V4ψ2+2ψ3V2ω22ψ14ψ2+2ψ3V2ω12ψ14ψ2+2ψ3Vω1+ω22ψ22ψ3Vω1+ω22ψ12ψ22ψ3V4ψ14ψ2+2ψ3
Made total 3277348 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A31+A11E16
24 out of 119
Subalgebra type: A31+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: A22 .
The semisimple part of the centralizer of the semisimple part of my centralizer: G12
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A31+A21+A11 , A81+A31+A11 , A22+A31+A11 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6, A11: (0, 1, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g23+g30+g34, g2
Positive simple generators: g34+g30+g23, g2
Cartan symmetric matrix: (2/3002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6002)
Decomposition of ambient Lie algebra: V3ω1+ω2V2ω28Vω1+ω29V2ω18V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω2+2ψ1+2ψ2V2ω1+2ψ1+2ψ2Vω1+ω22ψ1+4ψ2V2ω12ψ1+4ψ2V2ψ1+2ψ2V3ω1+ω2Vω1+ω2+4ψ12ψ2V2ω1+4ψ12ψ2V2ψ1+4ψ2V2ω22Vω1+ω23V2ω1V4ψ12ψ2Vω1+ω24ψ1+2ψ2V2ω14ψ1+2ψ22V0Vω1+ω2+2ψ14ψ2V2ω1+2ψ14ψ2V4ψ1+2ψ2Vω1+ω22ψ12ψ2V2ω12ψ12ψ2V2ψ14ψ2V2ψ12ψ2
Made total 1029 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A31+A21E16
25 out of 119
Subalgebra type: A31+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0, 0, 0), (1, 0, -1, 0, 1, -1)
Contained up to conjugation as a direct summand of: A31+A21+A11 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6, A21: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g29+g30+g31, g7g11
Positive simple generators: g31+g30+g29, g11+g7
Cartan symmetric matrix: (2/3001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6004)
Decomposition of ambient Lie algebra: V2ω1+2ω22Vω1+2ω22V2ω1+ω22V3ω1V2ω24Vω1+ω22V2ω12Vω22Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+ω2+2ψ1+6ψ2V2ω1+ω2+6ψ2Vω2+6ψ2Vω1+ω22ψ1+6ψ2Vω1+2ω2+2ψ1V3ω1+2ψ1V4ψ1V2ω1+2ω2Vω1+2ψ1V2ω22V2ω1Vω1+2ω22ψ1V3ω12ψ12V0Vω12ψ1Vω1+ω2+2ψ16ψ2V2ω1+ω26ψ2V4ψ1Vω26ψ2Vω1+ω22ψ16ψ2
Made total 825441 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A31E16
26 out of 119
Subalgebra type: 2A31 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6, A31: (1, 1, 1, 0, 1, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g29+g30+g31, g2+g7g11
Positive simple generators: g31+g30+g29, g11+g7+g2
Cartan symmetric matrix: (2/3002/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6006)
Decomposition of ambient Lie algebra: Vω1+3ω2V2ω1+2ω2V3ω1+ω22Vω1+2ω22V2ω1+ω22V2ω22Vω1+ω22V2ω12Vω22Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ω2+6ψV2ω1+ω2+6ψVω2+6ψVω1+6ψVω1+3ω2V2ω1+2ω2V3ω1+ω22V2ω22Vω1+ω22V2ω1V0Vω1+2ω26ψV2ω1+ω26ψVω26ψVω16ψ
Made total 1471846 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{4}_1+A^{1}_1E^{1}_6
27 out of 119
Subalgebra type: \displaystyle A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle A^{1}_2 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0), (1, 0, 0, 2, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{4}_1+2A^{1}_1 , \displaystyle 2A^{4}_1+A^{1}_1 , \displaystyle A^{1}_2+A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{1}_1: (1, 0, 1, 1, 1, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-22}+g_{-28}, \displaystyle g_{-24}
Positive simple generators: \displaystyle 2g_{28}+2g_{22}, \displaystyle g_{24}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}}\oplus 6V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 7V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 9V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}-2\psi_{1}+2\psi_{2}+8\psi_{3}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi_{2}+4\psi_{3}}\oplus V_{-2\psi_{1}+4\psi_{2}+6\psi_{3}} \oplus V_{\omega_{2}+6\psi_{3}}\oplus V_{2\omega_{1}+2\psi_{1}+2\psi_{3}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{3}} \oplus V_{2\omega_{1}+\omega_{2}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus V_{-4\psi_{1}+2\psi_{2}+6\psi_{3}}\oplus V_{2\psi_{1}+2\psi_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+2\psi_{2}-2\psi_{3}} \oplus V_{2\omega_{1}+\omega_{2}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{3}} \oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}-2\psi_{3}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi_{2}-4\psi_{3}}\oplus V_{-2\psi_{1}-2\psi_{2}} \oplus V_{4\psi_{1}-2\psi_{2}-6\psi_{3}}\oplus V_{\omega_{2}-6\psi_{3}}\oplus V_{2\omega_{1}+2\psi_{1}-2\psi_{2}-8\psi_{3}} \oplus V_{2\psi_{1}-4\psi_{2}-6\psi_{3}}
Made total 9595847 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{4}_1+A^{2}_1E^{1}_6
28 out of 119
Subalgebra type: \displaystyle A^{4}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (1, 0, 1, 1, -1, 0), (1, 0, 0, 2, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{2}_1: (1, 0, 2, 2, 2, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-23}+g_{-27}, \displaystyle g_{-18}+g_{-21}
Positive simple generators: \displaystyle 2g_{27}+2g_{23}, \displaystyle g_{21}+g_{18}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus 4V_{2\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{2}}\oplus 5V_{2\omega_{1}} \oplus 4V_{\omega_{2}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi_{1}+8\psi_{2}}\oplus V_{\omega_{2}+6\psi_{1}+6\psi_{2}}\oplus V_{2\omega_{1}+2\omega_{2}+2\psi_{1}+4\psi_{2}} \oplus V_{2\omega_{1}+\omega_{2}+4\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{2}+6\psi_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi_{1}-2\psi_{2}} \oplus 2V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi_{1}-4\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-4\psi_{1}-2\psi_{2}} \oplus V_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{2}-6\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}-8\psi_{2}}\oplus V_{\omega_{2}-6\psi_{1}-6\psi_{2}}
Made total 51475 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{4}_1E^{1}_6
29 out of 119
Subalgebra type: \displaystyle 2A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle A^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{4}_1+A^{1}_1 , \displaystyle 3A^{4}_1 , \displaystyle A^{1}_2+2A^{4}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{4}_1: (2, 0, 2, 2, 2, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-25}+g_{-26}, \displaystyle g_{-7}+g_{-16}
Positive simple generators: \displaystyle 2g_{26}+2g_{25}, \displaystyle 2g_{16}+2g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{2}}\oplus 6V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 8V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi_{2}}\oplus V_{2\omega_{1}+2\omega_{2}+2\psi_{1}}\oplus V_{2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi_{1}+2\psi_{2}} \oplus V_{4\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}+2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+4\psi_{2}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi_{1}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi_{2}} \oplus 2V_{0}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 32934469 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_1+A^{1}_1E^{1}_6
30 out of 119
Subalgebra type: \displaystyle A^{5}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, -1, -1, 0), (1, 0, 0, 2, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_1: (3, 4, 5, 7, 5, 3): 10, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-22}+g_{-24}+g_{-28}, \displaystyle g_{-15}
Positive simple generators: \displaystyle 2g_{28}+g_{24}+2g_{22}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}} \oplus 4V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+6\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}+8\psi_{2}} \oplus V_{3\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus V_{3\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}} \oplus V_{4\omega_{1}}\oplus V_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus V_{\omega_{2}-6\psi_{1}+6\psi_{2}}\oplus V_{3\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+6\psi_{1}-6\psi_{2}} \oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus V_{2\omega_{1}+4\psi_{1}-8\psi_{2}}\oplus V_{\omega_{1}-6\psi_{2}}
Made total 719 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_1+A^{4}_1E^{1}_6
31 out of 119
Subalgebra type: \displaystyle A^{5}_1+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, 1, 1, -1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_1: (3, 4, 5, 7, 5, 3): 10, \displaystyle A^{4}_1: (0, 0, 2, 2, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-22}+g_{-24}+g_{-28}, \displaystyle g_{-3}+g_{-10}
Positive simple generators: \displaystyle 2g_{28}+g_{24}+2g_{22}, \displaystyle 2g_{10}+2g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{3\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{2}}\oplus 2V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus 2V_{\omega_{1}+2\omega_{2}} \oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+4\psi}\oplus V_{\omega_{1}+6\psi}\oplus V_{3\omega_{1}+2\omega_{2}+2\psi}\oplus V_{\omega_{1}+2\omega_{2}+2\psi} \oplus V_{4\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{3\omega_{1}+2\omega_{2}-2\psi}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\omega_{1}+2\omega_{2}-2\psi} \oplus V_{0}\oplus V_{2\omega_{1}+2\omega_{2}-4\psi}\oplus V_{\omega_{1}-6\psi}
Made total 34939 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{6}_1E^{1}_6
32 out of 119
Subalgebra type: \displaystyle 2A^{6}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{6}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{6}_1: (3, 4, 6, 8, 6, 3): 12, \displaystyle A^{6}_1: (1, 2, 0, 2, 0, 1): 12
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-22}+g_{-23}+g_{-24}+g_{-25}, \displaystyle g_{-1}-2g_{-2}-g_{-4}-g_{-6}
Positive simple generators: \displaystyle g_{25}+2g_{24}+2g_{23}+g_{22}, \displaystyle -g_{6}-2g_{4}-g_{2}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/3 & 0\\ 0 & 1/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}12 & 0\\ 0 & 12\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+4\omega_{2}}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{\omega_{1}+3\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+3\omega_{2}+6\psi}\oplus V_{3\omega_{1}+\omega_{2}+6\psi}\oplus V_{2\omega_{1}+4\omega_{2}}\oplus V_{4\omega_{1}+2\omega_{2}} \oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+3\omega_{2}-6\psi}\oplus V_{3\omega_{1}+\omega_{2}-6\psi}
Made total 6418412 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{1}_1E^{1}_6
33 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{2}_2+A^{1}_1
Basis of Cartan of centralizer: 1 vectors: (0, 1, -1, 0, -1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 4, 6, 8, 6, 4): 16, \displaystyle A^{1}_1: (0, 1, 1, 2, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-12}+g_{-16}+g_{-22}+g_{-25}, \displaystyle g_{-23}
Positive simple generators: \displaystyle 2g_{25}+2g_{22}+2g_{16}+2g_{12}, \displaystyle g_{23}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{4\omega_{1}+\omega_{2}}\oplus 4V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 4V_{2\omega_{1}} \oplus 4V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+4\psi}\oplus V_{\omega_{2}+6\psi}\oplus V_{4\omega_{1}+\omega_{2}+2\psi}\oplus V_{2\omega_{1}+4\psi}\oplus V_{2\omega_{1}+\omega_{2}+2\psi} \oplus V_{4\psi}\oplus 2V_{4\omega_{1}}\oplus V_{\omega_{2}+2\psi}\oplus V_{4\omega_{1}+\omega_{2}-2\psi}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}} \oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{2\omega_{1}-4\psi}\oplus V_{-4\psi} \oplus V_{\omega_{2}-6\psi}
Made total 3649565 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1E^{1}_6
34 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 4, 6, 8, 6, 4): 16, \displaystyle A^{3}_1: (0, 2, 2, 3, 2, 0): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}, \displaystyle g_{-13}+g_{-14}-g_{-15}
Positive simple generators: \displaystyle 2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle -g_{15}+g_{14}+g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{4\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus 2V_{3\omega_{2}} \oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{2}+2\psi}\oplus V_{2\omega_{1}+\omega_{2}+2\psi} \oplus V_{4\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{4\omega_{1}+\omega_{2}-2\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{3\omega_{2}-2\psi}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{-4\psi}
Made total 5056886 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{4}_1E^{1}_6
35 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 4, 6, 8, 6, 4): 16, \displaystyle A^{4}_1: (0, 2, 2, 4, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}, \displaystyle g_{-4}+g_{-19}
Positive simple generators: \displaystyle 2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle 2g_{19}+2g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{4\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{2}}\oplus 2V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{4\omega_{1}}\oplus 3V_{2\omega_{2}} \oplus 2V_{2\omega_{1}}
Made total 29361990 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_1+A^{3}_1E^{1}_6
36 out of 119
Subalgebra type: \displaystyle A^{9}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_1: (4, 5, 7, 10, 7, 4): 18, \displaystyle A^{3}_1: (0, 1, 1, 0, 1, 0): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}+g_{-23}, \displaystyle g_{-2}-g_{-3}+g_{-5}
Positive simple generators: \displaystyle g_{23}+2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle g_{5}-g_{3}+g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+3\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}
Made total 6484741 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{1}_1E^{1}_6
37 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0, 0), (2, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (4, 6, 7, 10, 7, 4): 20, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-13}+g_{-14}+g_{-24}, \displaystyle g_{-15}
Positive simple generators: \displaystyle 4g_{24}+3g_{14}+3g_{13}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus 2V_{4\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus 4V_{3\omega_{1}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{1}+2\psi_{1}+6\psi_{2}}\oplus V_{3\omega_{1}+\omega_{2}+6\psi_{2}}\oplus V_{3\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus V_{4\omega_{1}+\omega_{2}+2\psi_{1}}\oplus V_{6\omega_{1}}\oplus V_{4\psi_{1}}\oplus V_{4\omega_{1}}\oplus V_{\omega_{2}+2\psi_{1}} \oplus V_{4\omega_{1}+\omega_{2}-2\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{\omega_{2}-2\psi_{1}}\oplus V_{3\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus V_{3\omega_{1}+\omega_{2}-6\psi_{2}}\oplus V_{-4\psi_{1}}\oplus V_{3\omega_{1}-2\psi_{1}-6\psi_{2}}
Made total 23596 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{2}_1E^{1}_6
38 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (4, 6, 7, 10, 7, 4): 20, \displaystyle A^{2}_1: (0, 0, 1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-8}+g_{-19}+g_{-24}, \displaystyle -g_{-4}+g_{-15}
Positive simple generators: \displaystyle 4g_{24}+3g_{19}+3g_{8}, \displaystyle g_{15}-g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{6\omega_{1}}\oplus 4V_{3\omega_{1}+\omega_{2}}\oplus 2V_{4\omega_{1}}\oplus 3V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{3\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus V_{4\omega_{1}+2\omega_{2}} \oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus V_{4\omega_{1}-4\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus V_{2\omega_{2}-4\psi_{1}+2\psi_{2}} \oplus 2V_{0}\oplus V_{3\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}}
Made total 262477 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{10}_1E^{1}_6
39 out of 119
Subalgebra type: \displaystyle 2A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (4, 6, 7, 10, 7, 4): 20, \displaystyle A^{10}_1: (0, 0, 3, 4, 3, 0): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-13}+g_{-14}+g_{-24}, \displaystyle g_{-3}+g_{-4}+g_{-5}
Positive simple generators: \displaystyle 4g_{24}+3g_{14}+3g_{13}, \displaystyle 3g_{5}+4g_{4}+3g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+4\omega_{2}}\oplus V_{6\omega_{2}}\oplus 2V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{1}+3\omega_{2}+6\psi}\oplus V_{4\omega_{1}+4\omega_{2}}\oplus V_{6\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{3\omega_{1}+3\omega_{2}-6\psi}
Made total 1456960 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{11}_1+A^{1}_1E^{1}_6
40 out of 119
Subalgebra type: \displaystyle A^{11}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{11}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{11}_1: (4, 6, 8, 11, 8, 4): 22, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-13}+g_{-14}+g_{-15}+g_{-24}, \displaystyle g_{-4}
Positive simple generators: \displaystyle 4g_{24}+g_{15}+3g_{14}+3g_{13}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}22 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus 3V_{3\omega_{1}+\omega_{2}}\oplus 3V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 4V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{1}+\omega_{2}+6\psi}\oplus V_{4\omega_{1}+6\psi}\oplus V_{2\omega_{1}+6\psi}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}} \oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{0} \oplus V_{3\omega_{1}+\omega_{2}-6\psi}\oplus V_{4\omega_{1}-6\psi}\oplus V_{2\omega_{1}-6\psi}
Made total 956 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{20}_1+A^{1}_1E^{1}_6
41 out of 119
Subalgebra type: \displaystyle A^{20}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{20}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 3, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{20}_1: (6, 8, 10, 14, 10, 6): 40, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-7}+g_{-13}+g_{-14}+g_{-16}, \displaystyle g_{-15}
Positive simple generators: \displaystyle 6g_{16}+4g_{14}+4g_{13}+6g_{7}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/10 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}40 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{8\omega_{1}}\oplus 2V_{6\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus 3V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+12\psi}\oplus V_{6\omega_{1}+\omega_{2}+6\psi}\oplus V_{2\omega_{1}+\omega_{2}+6\psi}\oplus V_{8\omega_{1}} \oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{6\omega_{1}+\omega_{2}-6\psi}\oplus V_{0}\oplus V_{2\omega_{1}+\omega_{2}-6\psi} \oplus V_{4\omega_{1}-12\psi}
Made total 2112126 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{28}_1+A^{2}_1E^{1}_6
42 out of 119
Subalgebra type: \displaystyle A^{28}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{28}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{28}_1: (6, 10, 12, 18, 12, 6): 56, \displaystyle A^{2}_1: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-2}+g_{-12}+g_{-15}+g_{-16}, \displaystyle g_{-7}+g_{-11}
Positive simple generators: \displaystyle 6g_{16}+6g_{15}+6g_{12}+10g_{2}, \displaystyle g_{11}+g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/14 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}56 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus V_{6\omega_{1}+2\omega_{2}}\oplus 2V_{6\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus 2V_{\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}+\omega_{2}+6\psi}\oplus V_{10\omega_{1}}\oplus V_{6\omega_{1}+2\omega_{2}}\oplus V_{\omega_{2}+6\psi}\oplus V_{6\omega_{1}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{6\omega_{1}+\omega_{2}-6\psi}\oplus V_{0}\oplus V_{\omega_{2}-6\psi}
Made total 1471223 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{28}_1+A^{8}_1E^{1}_6
43 out of 119
Subalgebra type: \displaystyle A^{28}_1+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{28}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{28}_1: (6, 10, 12, 18, 12, 6): 56, \displaystyle A^{8}_1: (2, 0, 2, 0, 2, 2): 16
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-2}+g_{-12}+g_{-15}+g_{-16}, \displaystyle g_{-1}+g_{-3}+g_{-5}+g_{-6}
Positive simple generators: \displaystyle 6g_{16}+6g_{15}+6g_{12}+10g_{2}, \displaystyle 2g_{6}+2g_{5}+2g_{3}+2g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/14 & 0\\ 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}56 & 0\\ 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}+4\omega_{2}}\oplus V_{10\omega_{1}}\oplus V_{6\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 6394164 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{35}_1+A^{1}_1E^{1}_6
44 out of 119
Subalgebra type: \displaystyle A^{35}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{35}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{35}_1: (8, 10, 14, 19, 14, 8): 70, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-6}+g_{-13}+g_{-14}+g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle 9g_{15}+5g_{14}+5g_{13}+8g_{6}+8g_{1}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/35 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}70 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{9\omega_{1}+\omega_{2}}\oplus V_{10\omega_{1}}\oplus V_{8\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 727 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2E^{1}_6
45 out of 119
Subalgebra type: \displaystyle A^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_1 .
Centralizer: \displaystyle 2A^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_2
Basis of Cartan of centralizer: 4 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_2+A^{1}_1 , \displaystyle A^{1}_2+A^{2}_1 , \displaystyle A^{1}_2+A^{4}_1 , \displaystyle A^{1}_2+A^{5}_1 , \displaystyle A^{1}_2+A^{8}_1 , \displaystyle A^{1}_2+2A^{1}_1 , \displaystyle A^{1}_2+A^{4}_1+A^{1}_1 , \displaystyle A^{1}_2+2A^{4}_1 , \displaystyle 2A^{1}_2 , \displaystyle A^{2}_2+A^{1}_2 , \displaystyle A^{2}_2+A^{1}_2 , \displaystyle 2A^{1}_2+A^{1}_1 , \displaystyle 2A^{1}_2+A^{4}_1 , \displaystyle 3A^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1\\ -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1\\ -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}}\oplus 9V_{\omega_{2}}\oplus 9V_{\omega_{1}}\oplus 16V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+2\psi_{1}+2\psi_{4}}\oplus V_{\omega_{1}+2\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{3}+2\psi_{4}}\oplus V_{2\psi_{1}+2\psi_{2}} \oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}+2\psi_{4}}\oplus V_{\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}} \oplus V_{\omega_{2}+2\psi_{1}+2\psi_{3}-2\psi_{4}}\oplus V_{-2\psi_{3}+4\psi_{4}}\oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{4\psi_{3}-2\psi_{4}}\oplus V_{\omega_{2}-2\psi_{2}+2\psi_{4}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{3}+2\psi_{4}} \oplus V_{\omega_{1}-2\psi_{1}+2\psi_{3}}\oplus V_{\omega_{2}+2\psi_{1}-2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}+2\psi_{3}-2\psi_{4}} \oplus V_{\omega_{1}+2\psi_{2}-2\psi_{4}}\oplus 4V_{0}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{3}+2\psi_{4}}\oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}-2\psi_{3}} \oplus V_{\omega_{2}-2\psi_{2}+2\psi_{3}-2\psi_{4}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}-2\psi_{4}}\oplus V_{-4\psi_{3}+2\psi_{4}} \oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{2\psi_{3}-4\psi_{4}}\oplus V_{\omega_{2}-2\psi_{2}-2\psi_{3}} \oplus V_{\omega_{1}-2\psi_{1}-2\psi_{4}}\oplus V_{-2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{3}-2\psi_{4}}
Made total 365 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2E^{1}_6
46 out of 119
Subalgebra type: \displaystyle B^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_1 .
Centralizer: \displaystyle B^{1}_2 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{1}_1 , \displaystyle B^{1}_2+A^{2}_1 , \displaystyle B^{1}_2+A^{10}_1 , \displaystyle B^{1}_2+2A^{1}_1 , \displaystyle 2B^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{19}+g_{8}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-8}+g_{-19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1\\ -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2\\ -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 8V_{\omega_{2}}\oplus 5V_{\omega_{1}}\oplus 11V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus V_{4\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{2}+2\psi_{2}+2\psi_{3}} \oplus V_{\omega_{1}+2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{2}+4\psi_{3}} \oplus V_{\omega_{1}+2\psi_{1}}\oplus V_{2\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}+4\psi_{3}} \oplus V_{\omega_{1}}\oplus V_{\omega_{2}+2\psi_{1}+2\psi_{2}-4\psi_{3}}\oplus 3V_{0}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}-4\psi_{3}} \oplus V_{-4\psi_{2}+2\psi_{3}}\oplus V_{-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{1}-4\psi_{2}+2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{2}-2\psi_{3}} \oplus V_{-2\psi_{1}-4\psi_{2}+2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus V_{-4\psi_{1}-4\psi_{2}+2\psi_{3}}
Made total 2180130 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra G^{1}_2E^{1}_6
47 out of 119
Subalgebra type: \displaystyle G^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: \displaystyle A^{2}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle G^{1}_2
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle G^{1}_2+A^{2}_1 , \displaystyle G^{1}_2+A^{8}_1 , \displaystyle A^{2}_2+G^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle G^{1}_2: (2, 3, 4, 6, 4, 2): 6, (-1, -1, -2, -3, -2, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-23}+g_{-30}+g_{-34}, \displaystyle g_{35}
Positive simple generators: \displaystyle g_{34}+g_{30}+g_{23}, \displaystyle g_{-35}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1\\ -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -3\\ -3 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}}\oplus 8V_{\omega_{1}}\oplus 8V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+4\psi_{1}-2\psi_{2}} \oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 2V_{0}\oplus V_{\omega_{1}-4\psi_{1}+2\psi_{2}} \oplus V_{\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 1031 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2E^{1}_6
48 out of 119
Subalgebra type: \displaystyle A^{2}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle A^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+A^{1}_1 , \displaystyle A^{2}_2+A^{4}_1 , \displaystyle A^{2}_2+A^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2\\ -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 3V_{\omega_{2}}\oplus 3V_{\omega_{1}}\oplus 8V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+2\psi_{2}}\oplus V_{\omega_{2}+2\psi_{1}} \oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{4\psi_{1}-2\psi_{2}} \oplus V_{2\omega_{2}+2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}} \oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{\omega_{2}-2\psi_{2}} \oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 26508 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2E^{1}_6
49 out of 119
Subalgebra type: \displaystyle A^{2}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle G^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{2}_2
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 1, 0, 0), (0, 1, -1, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+A^{1}_1 , \displaystyle A^{2}_2+A^{3}_1 , \displaystyle A^{2}_2+A^{4}_1 , \displaystyle A^{2}_2+A^{28}_1 , \displaystyle A^{2}_2+A^{3}_1+A^{1}_1 , \displaystyle A^{2}_2+A^{1}_2 , \displaystyle A^{2}_2+G^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{25}+g_{16}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle g_{-16}+g_{-25}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2\\ -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 8V_{\omega_{1}+\omega_{2}}\oplus 14V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{1}+6\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{2}} \oplus V_{-4\psi_{1}+6\psi_{2}}\oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+2\psi_{2}} \oplus V_{2\psi_{1}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}} \oplus 2V_{0}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}} \oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{4\psi_{1}-6\psi_{2}}\oplus V_{2\psi_{1}-6\psi_{2}}
Made total 12521464 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{2}_2E^{1}_6
50 out of 119
Subalgebra type: \displaystyle B^{2}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 1, 0, 0), (1, 0, -1, 0, 1, -1)
Contained up to conjugation as a direct summand of: \displaystyle B^{2}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-2, 0, -2, -2, -2, -2): 8
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{16}+g_{7}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle 2g_{-7}+2g_{-16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -4\\ -4 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 5V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+6\psi_{2}}\oplus V_{2\omega_{2}-2\psi_{1}+6\psi_{2}}\oplus V_{2\omega_{2}+2\psi_{1}}\oplus V_{-4\psi_{1}+6\psi_{2}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{4\psi_{1}-6\psi_{2}}\oplus V_{2\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus V_{\omega_{1}-6\psi_{2}}
Made total 9280966 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_2E^{1}_6
51 out of 119
Subalgebra type: \displaystyle A^{3}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_2: (2, 3, 4, 6, 4, 2): 6, (-1, 0, -2, -3, -2, -1): 6
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-23}+g_{-30}+g_{-34}, \displaystyle (1/2\sqrt{-3}+1/2)g_{24}+(-1/2\sqrt{-3}+1/2)g_{15}+g_{4}
Positive simple generators: \displaystyle g_{34}+g_{30}+g_{23}, \displaystyle g_{-4}+(1/2\sqrt{-3}+1/2)g_{-15}+(-1/2\sqrt{-3}+1/2)g_{-24}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1/3\\ -1/3 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -3\\ -3 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{3\omega_{2}}\oplus V_{3\omega_{1}}\oplus 7V_{\omega_{1}+\omega_{2}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus V_{3\omega_{2}}\oplus V_{3\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus 2V_{0} \oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}}
Made total 212017903 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_2E^{1}_6
52 out of 119
Subalgebra type: \displaystyle A^{3}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_2: (2, 3, 4, 6, 4, 2): 6, (0, -1, -1, -3, -1, 0): 6
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-29}+g_{-30}+g_{-31}, \displaystyle g_{10}+g_{9}+g_{8}
Positive simple generators: \displaystyle g_{31}+g_{30}+g_{29}, \displaystyle g_{-8}+g_{-9}+g_{-10}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1/3\\ -1/3 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -3\\ -3 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 3V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}} \oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}
Made total 141240 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{3}_2E^{1}_6
53 out of 119
Subalgebra type: \displaystyle B^{3}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{3}_2: (2, 3, 4, 6, 4, 2): 6, (-1, -2, -3, -6, -3, -1): 12
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-29}+g_{-30}+g_{-31}, \displaystyle (1/2\sqrt{-1}-1/2)g_{16}+g_{15}+(1/2\sqrt{-1}+1/2)g_{12}+g_{8}
Positive simple generators: \displaystyle g_{31}+g_{30}+g_{29}, \displaystyle 2g_{-8}+(-\sqrt{-1}+1)g_{-12}+2g_{-15}+(-\sqrt{-1}-1)g_{-16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1/3\\ -1/3 & 1/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -6\\ -6 & 12\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{2}+6\psi}\oplus V_{\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{2}-6\psi}
Made total 7974385 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra G^{3}_2E^{1}_6
54 out of 119
Subalgebra type: \displaystyle G^{3}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle G^{3}_2: (4, 5, 7, 10, 7, 4): 18, (-2, -2, -3, -5, -3, -2): 6
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}+g_{-23}, \displaystyle (-1/4\sqrt{-7}-3/4)g_{28}+g_{26}+(1/2\sqrt{-7}-1/2)g_{24}
Positive simple generators: \displaystyle g_{23}+2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle (-1/4\sqrt{-7}-1/4)g_{-24}+g_{-26}+(1/4\sqrt{-7}-3/4)g_{-28}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & -1/3\\ -1/3 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & -9\\ -9 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}}
Made total 16487567 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_2E^{1}_6
55 out of 119
Subalgebra type: \displaystyle A^{5}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{5}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_2: (3, 4, 5, 7, 5, 3): 10, (-1, -2, 0, -2, -2, -2): 10
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-22}+g_{-24}+g_{-28}, \displaystyle g_{11}+2g_{8}+g_{1}
Positive simple generators: \displaystyle 2g_{28}+g_{24}+2g_{22}, \displaystyle g_{-1}+g_{-8}+2g_{-11}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & -1/5\\ -1/5 & 2/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & -5\\ -5 & 10\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{3\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{2}+2\psi}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{3\omega_{2}-2\psi}\oplus V_{3\omega_{1}-2\psi}\oplus V_{0}\oplus V_{-4\psi}
Made total 4669812 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_2E^{1}_6
56 out of 119
Subalgebra type: \displaystyle A^{9}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_2: (4, 5, 7, 10, 7, 4): 18, (-2, -1, -2, -5, -2, -2): 18
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}+g_{-23}, \displaystyle (\sqrt{-1}-1)g_{10}+(-\sqrt{-1}-1)g_{9}+g_{8}+2\sqrt{-1}g_{6}+2\sqrt{-1}g_{1}
Positive simple generators: \displaystyle g_{23}+2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle -\sqrt{-1}g_{-1}-\sqrt{-1}g_{-6}+g_{-8}+(\sqrt{-1}-1)g_{-9}+(-\sqrt{-1}-1)g_{-10}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & -1/9\\ -1/9 & 2/9\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & -9\\ -9 & 18\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+4\omega_{2}}\oplus V_{4\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 24846702 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{1}_1E^{1}_6
57 out of 119
Subalgebra type: \displaystyle 3A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 3 vectors: (0, 0, 0, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle 4A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (1, 2, 2, 3, 2, 1): 2, \displaystyle A^{1}_1: (1, 0, 1, 1, 1, 1): 2, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{-24}, \displaystyle g_{-15}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{24}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{\omega_{3}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}} \oplus 5V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}+4\psi_{3}} \oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi_{1}}\oplus V_{\omega_{3}+2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{2}+\omega_{3}-2\psi_{2}+4\psi_{3}} \oplus V_{4\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}+4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}+2\psi_{3}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}+4\psi_{3}}\oplus V_{\omega_{3}+2\psi_{1}-4\psi_{2}+2\psi_{3}} \oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi_{1}}\oplus V_{\omega_{3}-2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{1}+2\psi_{2}-4\psi_{3}} \oplus V_{\omega_{1}+\omega_{2}-4\psi_{2}+2\psi_{3}}\oplus 3V_{0}\oplus V_{\omega_{2}+\omega_{3}+2\psi_{2}-4\psi_{3}}\oplus V_{\omega_{2}+2\psi_{1}-2\psi_{2}-2\psi_{3}} \oplus V_{\omega_{1}+\omega_{3}-2\psi_{2}-2\psi_{3}}\oplus V_{\omega_{3}-2\psi_{1}-4\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}-4\psi_{3}} \oplus V_{-4\psi_{1}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}-2\psi_{3}}
Made total 460 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_1+2A^{1}_1E^{1}_6
58 out of 119
Subalgebra type: \displaystyle A^{2}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1+A^{1}_1 .
Centralizer: \displaystyle A^{2}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{2}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 2, 3, 4, 3, 2): 4, \displaystyle A^{1}_1: (0, 1, 1, 2, 1, 0): 2, \displaystyle A^{1}_1: (0, 1, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{-23}, \displaystyle g_{-2}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle g_{23}, \displaystyle g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus 3V_{\omega_{2}+\omega_{3}}\oplus 4V_{\omega_{1}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 4V_{2\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}+4\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}+4\psi_{1}-2\psi_{2}} \oplus V_{2\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}} \oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}-4\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}+2\psi_{2}} \oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus V_{-4\psi_{1}+2\psi_{2}} \oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}}
Made total 713 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{2}_1+A^{1}_1E^{1}_6
59 out of 119
Subalgebra type: \displaystyle 2A^{2}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{2}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0, 0), (2, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{2}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 2, 3, 4, 3, 2): 4, \displaystyle A^{2}_1: (0, 2, 1, 2, 1, 0): 4, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{-13}+g_{-14}, \displaystyle g_{-15}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{14}+g_{13}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus 2V_{2\omega_{1}+\omega_{3}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus V_{2\omega_{2}+\omega_{3}+2\psi_{1}}\oplus V_{2\omega_{1}+\omega_{3}+2\psi_{1}}\oplus V_{4\psi_{1}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{2}+\omega_{3}-2\psi_{1}}\oplus V_{2\omega_{1}+\omega_{3}-2\psi_{1}} \oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-6\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi_{2}}\oplus V_{-4\psi_{1}} \oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}-6\psi_{2}}
Made total 679007 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{2}_1E^{1}_6
60 out of 119
Subalgebra type: \displaystyle 3A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{2}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 2, 3, 4, 3, 2): 4, \displaystyle A^{2}_1: (0, 2, 1, 2, 1, 0): 4, \displaystyle A^{2}_1: (0, 0, 1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{-8}+g_{-19}, \displaystyle g_{-9}+g_{-10}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle g_{19}+g_{8}, \displaystyle g_{10}+g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}+\omega_{3}} \oplus 2V_{2\omega_{3}}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle 2V_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus V_{2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus 2V_{2\omega_{3}}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{0}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi}
Made total 73384 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_1+A^{2}_1+A^{1}_1E^{1}_6
61 out of 119
Subalgebra type: \displaystyle A^{3}_1+A^{2}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1+A^{2}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_1: (2, 3, 4, 6, 4, 2): 6, \displaystyle A^{2}_1: (1, 0, 1, 0, 1, 1): 4, \displaystyle A^{1}_1: (0, 1, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-29}+g_{-30}+g_{-31}, \displaystyle g_{-7}-g_{-11}, \displaystyle g_{-2}
Positive simple generators: \displaystyle g_{31}+g_{30}+g_{29}, \displaystyle -g_{11}+g_{7}, \displaystyle g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{2}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}} \oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{2}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus V_{2\omega_{1}+\omega_{2}+6\psi}\oplus V_{\omega_{2}+6\psi}\oplus V_{\omega_{1}+2\omega_{2}+\omega_{3}} \oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}} \oplus 2V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi}\oplus V_{2\omega_{1}+\omega_{2}-6\psi}\oplus V_{\omega_{2}-6\psi}
Made total 743 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{4}_1+2A^{1}_1E^{1}_6
62 out of 119
Subalgebra type: \displaystyle A^{4}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1+A^{1}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, -1, -1, 0), (1, 0, 0, 2, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{1}_1: (1, 0, 1, 1, 1, 1): 2, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-22}+g_{-28}, \displaystyle g_{-24}, \displaystyle g_{-15}
Positive simple generators: \displaystyle 2g_{28}+2g_{22}, \displaystyle g_{24}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{3}}\oplus 2V_{2\omega_{1}+\omega_{2}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+6\psi_{2}}\oplus V_{2\omega_{1}+\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}+8\psi_{2}} \oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}+2\psi_{1}-4\psi_{2}} \oplus V_{\omega_{3}-6\psi_{1}+6\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+6\psi_{1}-6\psi_{2}} \oplus 2V_{0}\oplus V_{2\omega_{1}+\omega_{3}-2\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{1}+4\psi_{1}-8\psi_{2}}\oplus V_{\omega_{2}-6\psi_{2}}
Made total 715 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{4}_1+A^{1}_1E^{1}_6
63 out of 119
Subalgebra type: \displaystyle 2A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{4}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 1, -1, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{4}_1: (2, 0, 2, 2, 2, 2): 8, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-25}+g_{-26}, \displaystyle g_{-7}+g_{-16}, \displaystyle g_{-15}
Positive simple generators: \displaystyle 2g_{26}+2g_{25}, \displaystyle 2g_{16}+2g_{7}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{1}+2\omega_{2}+\omega_{3}}\oplus V_{4\omega_{2}}\oplus 2V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+4\psi}\oplus V_{\omega_{3}+6\psi}\oplus V_{2\omega_{1}+2\omega_{2}+\omega_{3}+2\psi}\oplus V_{4\omega_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}+\omega_{3}-2\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{0}\oplus V_{2\omega_{1}+2\omega_{2}-4\psi}\oplus V_{\omega_{3}-6\psi}
Made total 954 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{4}_1E^{1}_6
64 out of 119
Subalgebra type: \displaystyle 3A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{4}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 4, 6, 4, 2): 8, \displaystyle A^{4}_1: (2, 0, 2, 2, 2, 2): 8, \displaystyle A^{4}_1: (0, 0, 2, 2, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-25}+g_{-26}, \displaystyle g_{-7}+g_{-16}, \displaystyle g_{-5}+g_{-9}
Positive simple generators: \displaystyle 2g_{26}+2g_{25}, \displaystyle 2g_{16}+2g_{7}, \displaystyle 2g_{9}+2g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus V_{4\omega_{3}}\oplus V_{4\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}
Made total 45630 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1+A^{1}_1E^{1}_6
65 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{3}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 4, 6, 8, 6, 4): 16, \displaystyle A^{3}_1: (0, 2, 2, 3, 2, 0): 6, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-20}+g_{-21}, \displaystyle g_{-13}+g_{-14}-g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle 2g_{21}+2g_{20}+2g_{18}+2g_{17}, \displaystyle -g_{15}+g_{14}+g_{13}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{2}+\omega_{3}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}} \oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 925 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+2A^{1}_1E^{1}_6
66 out of 119
Subalgebra type: \displaystyle A^{10}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (4, 6, 7, 10, 7, 4): 20, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-13}+g_{-14}+g_{-24}, \displaystyle g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle 4g_{24}+3g_{14}+3g_{13}, \displaystyle g_{15}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+\omega_{3}}\oplus 2V_{3\omega_{1}+\omega_{2}} \oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{1}+\omega_{3}+6\psi}\oplus V_{3\omega_{1}+\omega_{2}+6\psi}\oplus V_{4\omega_{1}+\omega_{2}+\omega_{3}} \oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0} \oplus V_{3\omega_{1}+\omega_{3}-6\psi}\oplus V_{3\omega_{1}+\omega_{2}-6\psi}
Made total 638 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{1}_1E^{1}_6
67 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle A^{1}_2 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_2+2A^{1}_1 , \displaystyle A^{1}_2+A^{4}_1+A^{1}_1 , \displaystyle 2A^{1}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus 3V_{\omega_{2}+\omega_{3}}\oplus 3V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{\omega_{3}} \oplus 3V_{\omega_{2}}\oplus 3V_{\omega_{1}}\oplus 9V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+6\psi_{3}}\oplus V_{\omega_{2}+2\psi_{1}+4\psi_{3}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{2}+2\psi_{3}} \oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}+4\psi_{3}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{1}+2\psi_{2}} \oplus V_{\omega_{2}-2\psi_{2}+4\psi_{3}}\oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}+2\psi_{3}}\oplus V_{-2\psi_{1}+4\psi_{2}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}+2\psi_{1}-2\psi_{3}} \oplus 3V_{0}\oplus V_{\omega_{2}+\omega_{3}-2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{2}-4\psi_{3}}\oplus V_{-4\psi_{1}+2\psi_{2}} \oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}-2\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}-4\psi_{3}} \oplus V_{-2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}-4\psi_{3}}\oplus V_{\omega_{3}-6\psi_{3}}
Made total 450 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{2}_1E^{1}_6
68 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0, 0, 0), (0, 0, 0, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{2}_1: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-7}+g_{-11}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}+g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}}\oplus 2V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}} \oplus V_{\omega_{1}+\omega_{2}}\oplus 4V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{3}+2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+6\psi_{2}} \oplus V_{\omega_{3}+6\psi_{1}}\oplus V_{\omega_{1}+2\omega_{3}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+2\omega_{3}+2\psi_{1}-2\psi_{2}} \oplus 2V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}-4\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}} \oplus V_{\omega_{2}+2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+4\psi_{1}-4\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}+\omega_{3}-4\psi_{1}-2\psi_{2}} \oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{3}-6\psi_{1}}\oplus V_{\omega_{3}-6\psi_{2}}
Made total 2784 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{4}_1E^{1}_6
69 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle A^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_2+A^{4}_1+A^{1}_1 , \displaystyle A^{1}_2+2A^{4}_1 , \displaystyle 2A^{1}_2+A^{4}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{4}_1: (0, 0, 0, 0, 2, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-5}+g_{-6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle 2g_{6}+2g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{3}}\oplus 3V_{\omega_{2}+2\omega_{3}}\oplus 3V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 8V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+2\omega_{3}+2\psi_{2}}\oplus V_{\omega_{2}+2\omega_{3}+2\psi_{1}}\oplus V_{2\psi_{1}+2\psi_{2}}\oplus V_{4\omega_{3}} \oplus V_{\omega_{2}+2\omega_{3}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+2\omega_{3}+2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+4\psi_{2}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+2\omega_{3}-2\psi_{1}}\oplus V_{\omega_{2}+2\omega_{3}-2\psi_{2}} \oplus 2V_{0}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 2780 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{5}_1E^{1}_6
70 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{5}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{5}_1: (1, 0, 1, 0, 2, 2): 10
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-5}+g_{-6}+g_{-7}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{7}+2g_{6}+2g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 2/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 10\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{3}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus V_{\omega_{1}+3\omega_{3}}\oplus V_{\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}} \oplus 2V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{\omega_{3}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+6\psi}\oplus V_{\omega_{1}+2\omega_{3}+4\psi}\oplus V_{\omega_{2}+3\omega_{3}+2\psi}\oplus V_{\omega_{2}+\omega_{3}+2\psi} \oplus V_{4\omega_{3}}\oplus 2V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+3\omega_{3}-2\psi}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{3}-2\psi} \oplus V_{\omega_{2}+2\omega_{3}-4\psi}\oplus V_{\omega_{3}-6\psi}
Made total 10697 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{8}_1E^{1}_6
71 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{8}_1: (2, 0, 2, 0, 2, 2): 16
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-1}+g_{-3}+g_{-5}+g_{-6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle 2g_{6}+2g_{5}+2g_{3}+2g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+4\omega_{3}}\oplus V_{\omega_{1}+4\omega_{3}}\oplus 2V_{4\omega_{3}}\oplus V_{\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}} \oplus 2V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}
Made total 30250 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{1}_1E^{1}_6
72 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0, 0), (2, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{14}+g_{13}, \displaystyle g_{-15}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-13}+g_{-14}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{3}}\oplus 4V_{\omega_{2}} \oplus V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+2\psi_{1}+6\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}+6\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}+6\psi_{2}} \oplus V_{4\psi_{1}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{1}}\oplus V_{\omega_{3}+2\psi_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{\omega_{1}}\oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}}\oplus V_{\omega_{3}-2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{1}-6\psi_{2}} \oplus V_{-4\psi_{1}}\oplus V_{\omega_{2}+\omega_{3}-6\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}-6\psi_{2}}
Made total 22148 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{2}_1E^{1}_6
73 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, \displaystyle A^{2}_1: (0, 0, 1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{19}+g_{8}, \displaystyle -g_{-4}+g_{-15}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-8}+g_{-19}, \displaystyle g_{15}-g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{3}}\oplus 3V_{2\omega_{3}}\oplus 4V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{3}+4\psi_{1}-2\psi_{2}} \oplus V_{\omega_{1}+2\omega_{3}}\oplus V_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{3}-4\psi_{1}+2\psi_{2}} \oplus 2V_{0}\oplus V_{\omega_{2}+\omega_{3}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}-2\psi_{1}-2\psi_{2}}
Made total 262431 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{10}_1E^{1}_6
74 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, \displaystyle A^{10}_1: (0, 0, 3, 4, 3, 0): 20
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{14}+g_{13}, \displaystyle g_{-3}+g_{-4}+g_{-5}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-13}+g_{-14}, \displaystyle 3g_{5}+4g_{4}+3g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{3}}\oplus V_{\omega_{1}+4\omega_{3}}\oplus 2V_{\omega_{2}+3\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+3\omega_{3}+6\psi}\oplus V_{6\omega_{3}}\oplus V_{\omega_{1}+4\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{0}\oplus V_{\omega_{2}+3\omega_{3}-6\psi}
Made total 1458590 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra G^{1}_2+A^{2}_1E^{1}_6
75 out of 119
Subalgebra type: \displaystyle G^{1}_2+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle G^{1}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle G^{1}_2: (2, 3, 4, 6, 4, 2): 6, (-1, -1, -2, -3, -2, -1): 2, \displaystyle A^{2}_1: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 17.
Negative simple generators: \displaystyle g_{-29}+g_{-30}+g_{-31}, \displaystyle g_{35}, \displaystyle g_{-7}-g_{-11}
Positive simple generators: \displaystyle g_{31}+g_{30}+g_{29}, \displaystyle g_{-35}, \displaystyle -g_{11}+g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -3 & 0\\ -3 & 2 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus 2V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{3}+6\psi}\oplus V_{\omega_{3}+6\psi}\oplus V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}} \oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{3}-6\psi}\oplus V_{\omega_{3}-6\psi}
Made total 1471286 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra G^{1}_2+A^{8}_1E^{1}_6
76 out of 119
Subalgebra type: \displaystyle G^{1}_2+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle G^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle G^{1}_2: (2, 3, 4, 6, 4, 2): 6, (-1, -1, -2, -3, -2, -1): 2, \displaystyle A^{8}_1: (2, 0, 2, 0, 2, 2): 16
Dimension of subalgebra generated by predefined or computed generators: 17.
Negative simple generators: \displaystyle g_{-29}+g_{-30}+g_{-31}, \displaystyle g_{35}, \displaystyle g_{-1}+g_{-3}-g_{-5}+g_{-6}
Positive simple generators: \displaystyle g_{31}+g_{30}+g_{29}, \displaystyle g_{-35}, \displaystyle 2g_{6}-2g_{5}+2g_{3}+2g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & -3 & 0\\ -3 & 2 & 0\\ 0 & 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+4\omega_{3}}\oplus V_{4\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}}
Made total 5318551 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{1}_1E^{1}_6
77 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (0, 1, 0, -1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, \displaystyle A^{1}_1: (0, 1, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle g_{-8}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{8}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}+\omega_{3}}\oplus V_{2\omega_{1}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+6\psi}\oplus V_{2\omega_{2}+4\psi}\oplus V_{\omega_{1}+4\psi}\oplus V_{2\omega_{1}+\omega_{3}+2\psi}\oplus V_{\omega_{2}+\omega_{3}+2\psi} \oplus V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}+\omega_{3}-2\psi}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{3}-2\psi} \oplus V_{2\omega_{1}-4\psi}\oplus V_{\omega_{2}-4\psi}\oplus V_{\omega_{3}-6\psi}
Made total 630 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{1}_1E^{1}_6
78 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{2}_2+A^{1}_1
Basis of Cartan of centralizer: 1 vectors: (0, 1, -1, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{1}_1: (0, 1, 1, 2, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{25}+g_{16}, \displaystyle g_{-23}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle g_{-16}+g_{-25}, \displaystyle g_{23}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 4V_{\omega_{3}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+6\psi}\oplus V_{\omega_{1}+\omega_{2}+4\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus V_{4\psi} \oplus V_{\omega_{3}+2\psi}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi} \oplus V_{0}\oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{1}+\omega_{2}-4\psi}\oplus V_{-4\psi}\oplus V_{\omega_{3}-6\psi}
Made total 958 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{3}_1E^{1}_6
79 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{3}_1: (0, 2, 2, 3, 2, 0): 6
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{21}+g_{20}, \displaystyle g_{-13}+g_{-14}-g_{-15}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{15}+g_{14}+g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}+2\omega_{3}}\oplus 2V_{3\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{1}+\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{3\omega_{3}+2\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus V_{4\psi}\oplus V_{\omega_{1}+\omega_{2}+2\omega_{3}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{3\omega_{3}-2\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi} \oplus V_{0}\oplus V_{-4\psi}
Made total 5136524 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{4}_1E^{1}_6
80 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, \displaystyle A^{4}_1: (0, 2, 0, 2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle g_{-2}+g_{-4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle 2g_{4}+2g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{3}}\oplus V_{2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{3}}\oplus V_{\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}} \oplus V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}}
Made total 3810 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{4}_1E^{1}_6
81 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{4}_1: (0, 2, 2, 4, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-30}+g_{-34}, \displaystyle g_{25}+g_{16}, \displaystyle g_{-8}+g_{-9}-g_{-10}+g_{-19}
Positive simple generators: \displaystyle g_{34}+g_{30}, \displaystyle g_{-16}+g_{-25}, \displaystyle g_{19}-g_{10}+g_{9}+g_{8}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}+2\omega_{3}}\oplus 3V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}}
Made total 6862360 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{28}_1E^{1}_6
82 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{28}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{28}_1: (0, 6, 6, 10, 6, 0): 56
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{21}+g_{20}, \displaystyle g_{-2}-g_{-3}+g_{-4}+g_{-5}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-20}+g_{-21}, \displaystyle 6g_{5}+10g_{4}-6g_{3}+6g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 1/14\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 56\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}+6\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 6570789 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{2}_2+A^{1}_1E^{1}_6
83 out of 119
Subalgebra type: \displaystyle B^{2}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{2}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 3, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-2, 0, -2, -2, -2, -2): 8, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{16}+g_{7}, \displaystyle g_{-15}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle 2g_{-7}+2g_{-16}, \displaystyle g_{15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1/2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -4 & 0\\ -4 & 8 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+12\psi}\oplus V_{2\omega_{2}+\omega_{3}+6\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0} \oplus V_{2\omega_{2}+\omega_{3}-6\psi}\oplus V_{\omega_{1}-12\psi}
Made total 2168207 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_2+A^{1}_1E^{1}_6
84 out of 119
Subalgebra type: \displaystyle A^{5}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_2: (3, 4, 5, 7, 5, 3): 10, (-1, -2, 0, -2, -2, -2): 10, \displaystyle A^{1}_1: (0, 0, 0, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-22}+g_{-24}+g_{-28}, \displaystyle g_{11}+2g_{8}+g_{1}, \displaystyle g_{-10}
Positive simple generators: \displaystyle 2g_{28}+g_{24}+2g_{22}, \displaystyle g_{-1}+g_{-8}+2g_{-11}, \displaystyle g_{10}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & -1/5 & 0\\ -1/5 & 2/5 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & -5 & 0\\ -5 & 10 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{3\omega_{2}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 812 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_3E^{1}_6
85 out of 119
Subalgebra type: \displaystyle A^{1}_3 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle 2A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_3
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, -1, 0), (0, 0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_3+A^{1}_1 , \displaystyle A^{1}_3+A^{2}_1 , \displaystyle A^{1}_3+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{3}}\oplus 4V_{\omega_{3}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 7V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+4\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{2}+4\psi_{3}}\oplus V_{\omega_{2}+2\psi_{1}+2\psi_{3}}\oplus V_{\omega_{3}+2\psi_{1}+2\psi_{2}} \oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}} \oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{3}-2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{2}-2\psi_{3}}\oplus 3V_{0}\oplus V_{\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus V_{\omega_{2}+2\psi_{1}-2\psi_{2}-2\psi_{3}}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus V_{\omega_{2}-2\psi_{1}-2\psi_{3}}\oplus V_{\omega_{3}-4\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{2}-4\psi_{3}}
Made total 448 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_3E^{1}_6
86 out of 119
Subalgebra type: \displaystyle B^{1}_3 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2 .
Centralizer: \displaystyle A^{2}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_3+A^{2}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, -1, -2, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{15}+g_{4}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}+g_{-15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -2\\ 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 4V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus 3V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+4\psi_{1}-2\psi_{2}} \oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus 2V_{0}\oplus V_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+2\psi_{1}-4\psi_{2}} \oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}-2\psi_{1}-2\psi_{2}}
Made total 201627 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3E^{1}_6
87 out of 119
Subalgebra type: \displaystyle C^{1}_3 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle C^{1}_3+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, (0, 0, -1, -1, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle g_{15}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{-15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1\\ 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{1}}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{3}-2\psi} \oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 632 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_3E^{1}_6
88 out of 119
Subalgebra type: \displaystyle A^{2}_3 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 1, 0, 0, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_3+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_3: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, (0, 0, -1, 0, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle -g_{5}+g_{3}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{-3}-g_{-5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1/2\\ 0 & -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{2\omega_{3}+2\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}\oplus V_{2\omega_{3}-2\psi} \oplus V_{2\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 8556 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 4A^{1}_1E^{1}_6
89 out of 119
Subalgebra type: \displaystyle 4A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 3A^{1}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (1, 2, 2, 3, 2, 1): 2, \displaystyle A^{1}_1: (1, 0, 1, 1, 1, 1): 2, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{-24}, \displaystyle g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{24}, \displaystyle g_{15}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus 2V_{\omega_{3}+\omega_{4}}\oplus 2V_{\omega_{2}+\omega_{4}} \oplus 2V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}} \oplus 2V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{4}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{4}-2\psi_{1}+4\psi_{2}} \oplus V_{\omega_{2}+\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}+4\psi_{1}-2\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{\omega_{3}+\omega_{4}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{4}+2\psi_{1}-4\psi_{2}} \oplus V_{\omega_{2}+\omega_{3}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{2}+\omega_{4}-2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}-2\psi_{2}}
Made total 543 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{2}_1+2A^{1}_1E^{1}_6
90 out of 119
Subalgebra type: \displaystyle 2A^{2}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{2}_1+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 2, 3, 4, 3, 2): 4, \displaystyle A^{2}_1: (0, 2, 1, 2, 1, 0): 4, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{-13}+g_{-14}, \displaystyle g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{14}+g_{13}, \displaystyle g_{15}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0 & 0\\ 0 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus 2V_{\omega_{1}+\omega_{2}+\omega_{4}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{2}+\omega_{4}+6\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus V_{2\omega_{2}+\omega_{3}+\omega_{4}} \oplus V_{2\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{2}+\omega_{4}-6\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi}
Made total 731 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+2A^{1}_1E^{1}_6
91 out of 119
Subalgebra type: \displaystyle A^{1}_2+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2+A^{1}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0, 0, 0), (0, 0, 0, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1, 1): 2, \displaystyle A^{1}_1: (1, 0, 1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}, \displaystyle g_{-7}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}, \displaystyle g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}} \oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 2V_{\omega_{4}}\oplus 2V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{4}+2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+6\psi_{2}} \oplus V_{\omega_{4}+6\psi_{1}}\oplus V_{\omega_{1}+\omega_{3}+\omega_{4}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}+\omega_{4}+2\psi_{1}-2\psi_{2}} \oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}-4\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+4\psi_{1}-4\psi_{2}} \oplus 2V_{0}\oplus V_{\omega_{2}+\omega_{3}-4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{4}-2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{4}-6\psi_{1}} \oplus V_{\omega_{3}-6\psi_{2}}
Made total 535 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+A^{4}_1+A^{1}_1E^{1}_6
92 out of 119
Subalgebra type: \displaystyle A^{1}_2+A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2+A^{4}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{4}_1: (0, 0, 0, 0, 2, 2): 8, \displaystyle A^{1}_1: (1, 0, 1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-5}+g_{-6}, \displaystyle g_{-7}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle 2g_{6}+2g_{5}, \displaystyle g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 1/2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 8 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+2\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+2\omega_{3}+\omega_{4}}\oplus V_{4\omega_{3}}\oplus V_{\omega_{2}+2\omega_{3}} \oplus V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{\omega_{4}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{4}+6\psi}\oplus V_{\omega_{1}+2\omega_{3}+4\psi}\oplus V_{\omega_{2}+2\omega_{3}+\omega_{4}+2\psi}\oplus V_{4\omega_{3}} \oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+2\omega_{3}+\omega_{4}-2\psi}\oplus V_{0} \oplus V_{\omega_{2}+2\omega_{3}-4\psi}\oplus V_{\omega_{4}-6\psi}
Made total 624 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_2+2A^{4}_1E^{1}_6
93 out of 119
Subalgebra type: \displaystyle A^{1}_2+2A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2+A^{4}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{4}_1: (0, 0, 0, 0, 2, 2): 8, \displaystyle A^{4}_1: (2, 0, 2, 0, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-5}+g_{-6}, \displaystyle g_{-1}+g_{-3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle 2g_{6}+2g_{5}, \displaystyle 2g_{3}+2g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 1/2 & 0\\ 0 & 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 8 & 0\\ 0 & 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+2\omega_{3}+2\omega_{4}}\oplus V_{\omega_{1}+2\omega_{3}+2\omega_{4}}\oplus V_{4\omega_{4}}\oplus V_{4\omega_{3}} \oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 3798 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{1}_2E^{1}_6
94 out of 119
Subalgebra type: \displaystyle 2A^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_2+A^{1}_1 .
Centralizer: \displaystyle A^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{1}_2
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{1}_2+A^{1}_1 , \displaystyle 2A^{1}_2+A^{4}_1 , \displaystyle 3A^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_2: (0, 0, 0, 0, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}, \displaystyle g_{6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}, \displaystyle g_{-6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{3}+\omega_{4}}\oplus 3V_{\omega_{2}+\omega_{4}}\oplus 3V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 8V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+2\psi_{2}}\oplus V_{\omega_{2}+\omega_{4}+2\psi_{1}}\oplus V_{-2\psi_{1}+4\psi_{2}} \oplus V_{\omega_{2}+\omega_{4}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{4\psi_{1}-2\psi_{2}} \oplus V_{\omega_{1}+\omega_{3}+2\psi_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{3}-2\psi_{1}}\oplus V_{\omega_{2}+\omega_{4}-2\psi_{2}} \oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 533 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+2A^{1}_1E^{1}_6
95 out of 119
Subalgebra type: \displaystyle B^{1}_2+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, \displaystyle A^{1}_1: (0, 0, 1, 1, 1, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{14}+g_{13}, \displaystyle g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-13}+g_{-14}, \displaystyle g_{15}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus 2V_{\omega_{2}+\omega_{4}} \oplus V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{4}+6\psi}\oplus V_{\omega_{2}+\omega_{3}+6\psi}\oplus V_{\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{4}-6\psi} \oplus V_{\omega_{2}+\omega_{3}-6\psi}
Made total 628 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2B^{1}_2E^{1}_6
96 out of 119
Subalgebra type: \displaystyle 2B^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, \displaystyle B^{1}_2: (0, 0, 1, 1, 1, 0): 2, (0, 0, -1, 0, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 20.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{14}+g_{13}, \displaystyle g_{-15}, \displaystyle g_{5}+g_{3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-13}+g_{-14}, \displaystyle g_{15}, \displaystyle g_{-3}+g_{-5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus 2V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{2}+\omega_{4}+6\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{4}-6\psi}
Made total 8550 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{3}_1+A^{1}_1E^{1}_6
97 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{3}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{3}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{3}_1: (0, 2, 2, 3, 2, 0): 6, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{21}+g_{20}, \displaystyle g_{-13}+g_{-14}-g_{-15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{15}+g_{14}+g_{13}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2/3 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 6 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{3\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}+2\omega_{3}} \oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 913 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{1}_2E^{1}_6
98 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle A^{1}_2: (0, 1, 1, 2, 1, 0): 2, (0, 0, 0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{21}+g_{20}, \displaystyle g_{-23}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-20}+g_{-21}, \displaystyle g_{23}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{\omega_{3}+\omega_{4}}\oplus 2V_{\omega_{1}+\omega_{2}} \oplus V_{\omega_{4}}\oplus V_{\omega_{3}}
Made total 130682 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{1}_2E^{1}_6
99 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, \displaystyle A^{1}_2: (0, 1, 0, 1, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle g_{-8}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{8}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}+\omega_{4}}\oplus V_{2\omega_{1}+\omega_{3}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}} \oplus V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}}
Made total 721 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+G^{1}_2E^{1}_6
100 out of 119
Subalgebra type: \displaystyle A^{2}_2+G^{1}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{3}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, \displaystyle G^{1}_2: (0, 2, 2, 3, 2, 0): 6, (0, -1, -1, -1, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 22.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{21}+g_{20}, \displaystyle g_{-13}+g_{-14}-g_{-15}, \displaystyle g_{19}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{15}+g_{14}+g_{13}, \displaystyle g_{-19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2/3 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 6 & -3\\ 0 & 0 & -3 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{4}}
Made total 921 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_3+A^{1}_1E^{1}_6
101 out of 119
Subalgebra type: \displaystyle A^{1}_3+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 2, 0, -2, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_3+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{-6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus 2V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}} \oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+\omega_{4}+6\psi_{2}}\oplus V_{\omega_{3}-2\psi_{1}+8\psi_{2}}\oplus V_{\omega_{3}+2\psi_{1}+4\psi_{2}} \oplus V_{\omega_{2}+\omega_{4}-2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{2}+\omega_{4}+2\psi_{1}-2\psi_{2}} \oplus V_{-4\psi_{1}+4\psi_{2}}\oplus 2V_{0}\oplus V_{4\psi_{1}-4\psi_{2}}\oplus V_{\omega_{3}+\omega_{4}-6\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus V_{\omega_{1}+2\psi_{1}-8\psi_{2}}
Made total 531 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_3+A^{2}_1E^{1}_6
102 out of 119
Subalgebra type: \displaystyle A^{1}_3+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, \displaystyle A^{2}_1: (1, 0, 0, 0, 0, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{-1}+g_{-6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{6}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+2\omega_{4}}\oplus 2V_{2\omega_{4}}\oplus 2V_{\omega_{3}+\omega_{4}}\oplus 2V_{\omega_{1}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}} \oplus V_{\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+\omega_{4}+6\psi}\oplus V_{\omega_{1}+\omega_{4}+6\psi}\oplus V_{\omega_{2}+2\omega_{4}}\oplus 2V_{2\omega_{4}} \oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{3}+\omega_{4}-6\psi}\oplus V_{\omega_{1}+\omega_{4}-6\psi}
Made total 3288 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_3+A^{2}_1E^{1}_6
103 out of 119
Subalgebra type: \displaystyle B^{1}_3+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, -1, -2, -1, 0): 4, \displaystyle A^{2}_1: (0, 0, 1, 0, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{10}+g_{9}, \displaystyle g_{-3}+g_{-5}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-9}+g_{-10}, \displaystyle g_{5}+g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -2 & 0\\ 0 & -2 & 4 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+2\omega_{4}}\oplus V_{2\omega_{4}}\oplus 2V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+\omega_{4}+6\psi}\oplus V_{\omega_{1}+2\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{3}+\omega_{4}-6\psi}
Made total 1466930 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+A^{1}_1E^{1}_6
104 out of 119
Subalgebra type: \displaystyle C^{1}_3+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, (0, 0, -1, -1, -1, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle g_{15}, \displaystyle g_{-4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{-15}, \displaystyle g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{2}}
Made total 715 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_3+A^{1}_1E^{1}_6
105 out of 119
Subalgebra type: \displaystyle A^{2}_3+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_3 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_3: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, (0, 0, -1, 0, -1, 0): 4, \displaystyle A^{1}_1: (0, 1, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle -g_{5}+g_{3}, \displaystyle g_{-2}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{-3}-g_{-5}, \displaystyle g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}+\omega_{4}}\oplus V_{2\omega_{1}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}
Made total 796 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_4E^{1}_6
106 out of 119
Subalgebra type: \displaystyle A^{1}_4 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_4+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_4: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{4}}\oplus V_{\omega_{4}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+6\psi_{2}}\oplus V_{\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{4}} \oplus V_{4\psi_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}+2\psi_{1}-4\psi_{2}}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus V_{\omega_{4}-6\psi_{2}}
Made total 531 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra D^{1}_4E^{1}_6
107 out of 119
Subalgebra type: \displaystyle D^{1}_4 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle D^{1}_4: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, -1, -1, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 28.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{15}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-15}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & -1\\ 0 & -1 & 2 & 0\\ 0 & -1 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & -1\\ 0 & -1 & 2 & 0\\ 0 & -1 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{\omega_{4}}\oplus 2V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{4}-2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+4\psi_{1}-2\psi_{2}} \oplus V_{\omega_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{4}+2\psi_{1}-4\psi_{2}}\oplus V_{\omega_{3}-2\psi_{1}-2\psi_{2}}
Made total 535 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_4E^{1}_6
108 out of 119
Subalgebra type: \displaystyle B^{1}_4 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_4: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, -1, 0, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 36.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}+g_{3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-3}+g_{-5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 2V_{\omega_{4}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{4}+6\psi}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{\omega_{4}-6\psi}
Made total 3288 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_4E^{1}_6
109 out of 119
Subalgebra type: \displaystyle C^{1}_4 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_3 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_4: (2, 2, 3, 4, 3, 2): 4, (-1, 0, 0, 0, 0, -1): 4, (0, 0, -1, 0, -1, 0): 4, (0, 0, 0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 36.
Negative simple generators: \displaystyle g_{-32}+g_{-33}, \displaystyle g_{6}+g_{1}, \displaystyle -g_{5}+g_{3}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{33}+g_{32}, \displaystyle g_{-1}+g_{-6}, \displaystyle g_{-3}-g_{-5}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & -2\\ 0 & 0 & -2 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}}\oplus V_{\omega_{4}}
Made total 796 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra F^{1}_4E^{1}_6
110 out of 119
Subalgebra type: \displaystyle F^{1}_4 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_3 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle F^{1}_4: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, -1, -2, -1, 0): 4, (-1, 0, 0, 0, 0, -1): 4
Dimension of subalgebra generated by predefined or computed generators: 52.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{10}+g_{9}, \displaystyle g_{6}+g_{1}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-9}+g_{-10}, \displaystyle g_{-1}+g_{-6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 1 & -1/2\\ 0 & 0 & -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -2 & 0\\ 0 & -2 & 4 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{4}}\oplus V_{\omega_{1}}
Made total 133227 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{1}_2+A^{1}_1E^{1}_6
111 out of 119
Subalgebra type: \displaystyle 2A^{1}_2+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2A^{1}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_2: (0, 0, 0, 0, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, \displaystyle A^{1}_1: (1, 0, 1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 19.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}, \displaystyle g_{6}, \displaystyle g_{-7}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}, \displaystyle g_{-6}, \displaystyle g_{7}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+\omega_{4}+\omega_{5}}\oplus V_{\omega_{1}+\omega_{3}+\omega_{5}}\oplus V_{2\omega_{5}}\oplus V_{\omega_{3}+\omega_{4}} \oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{\omega_{5}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{5}+6\psi}\oplus V_{\omega_{1}+\omega_{3}+4\psi}\oplus V_{\omega_{2}+\omega_{4}+\omega_{5}+2\psi}\oplus V_{2\omega_{5}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{3}+\omega_{5}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{4}-4\psi} \oplus V_{\omega_{5}-6\psi}
Made total 618 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{1}_2+A^{4}_1E^{1}_6
112 out of 119
Subalgebra type: \displaystyle 2A^{1}_2+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_2: (0, 0, 0, 0, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, \displaystyle A^{4}_1: (2, 0, 2, 0, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 19.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}, \displaystyle g_{6}, \displaystyle g_{-1}+g_{-3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}, \displaystyle g_{-6}, \displaystyle 2g_{3}+2g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{5}}\oplus V_{\omega_{2}+\omega_{4}+2\omega_{5}}\oplus V_{\omega_{1}+\omega_{3}+2\omega_{5}}\oplus V_{2\omega_{5}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}}
Made total 3798 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_3+2A^{1}_1E^{1}_6
113 out of 119
Subalgebra type: \displaystyle A^{1}_3+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_3+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_3: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 0, 1): 2, \displaystyle A^{1}_1: (1, 0, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{-6}, \displaystyle g_{-1}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{6}, \displaystyle g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}+\omega_{4}+\omega_{5}}\oplus V_{2\omega_{5}}\oplus V_{\omega_{3}+\omega_{5}}\oplus V_{\omega_{1}+\omega_{5}} \oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{3}+\omega_{5}+6\psi}\oplus V_{\omega_{1}+\omega_{4}+6\psi}\oplus V_{\omega_{2}+\omega_{4}+\omega_{5}}\oplus V_{2\omega_{5}} \oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{5}-6\psi}\oplus V_{\omega_{3}+\omega_{4}-6\psi}
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_4+A^{1}_1E^{1}_6
114 out of 119
Subalgebra type: \displaystyle A^{1}_4+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_4 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -4)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_4: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, \displaystyle A^{1}_1: (1, 0, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 27.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}, \displaystyle g_{-1}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}, \displaystyle g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{3}+\omega_{5}}\oplus V_{\omega_{2}+\omega_{5}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{\omega_{4}} \oplus V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{1}+12\psi}\oplus V_{\omega_{3}+\omega_{5}+6\psi}\oplus V_{2\omega_{5}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{5}-6\psi} \oplus V_{\omega_{4}-12\psi}
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_5E^{1}_6
115 out of 119
Subalgebra type: \displaystyle A^{1}_5 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_4 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{1}_5
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{1}_5+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_5: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, (0, 0, 0, 0, 0, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 35.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}, \displaystyle g_{6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}, \displaystyle g_{-6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{5}}\oplus 2V_{\omega_{3}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{1}+\omega_{5}}\oplus V_{0}\oplus V_{\omega_{3}-2\psi}\oplus V_{-4\psi}
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra D^{1}_5E^{1}_6
116 out of 119
Subalgebra type: \displaystyle D^{1}_5 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_4 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle D^{1}_5: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, (0, 0, -1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 45.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}, \displaystyle g_{3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}, \displaystyle g_{-3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & -1\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & -1 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & -1\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & -1 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{5}}\oplus V_{\omega_{4}}\oplus V_{\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{\omega_{5}+6\psi}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{4}-6\psi}
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{1}_2E^{1}_6
117 out of 119
Subalgebra type: \displaystyle 3A^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2A^{1}_2+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_2: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, \displaystyle A^{1}_2: (0, 0, 0, 0, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, \displaystyle A^{1}_2: (1, 0, 1, 0, 0, 0): 2, (0, 0, -1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{-11}, \displaystyle g_{6}, \displaystyle g_{-7}, \displaystyle g_{3}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{11}, \displaystyle g_{-6}, \displaystyle g_{7}, \displaystyle g_{-3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & -1\\ 0 & 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0 & 0\\ -1 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & -1\\ 0 & 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{1}+\omega_{3}+\omega_{6}}\oplus V_{\omega_{2}+\omega_{4}+\omega_{5}}\oplus V_{\omega_{5}+\omega_{6}}\oplus V_{\omega_{3}+\omega_{4}} \oplus V_{\omega_{1}+\omega_{2}}
Made total 701 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{1}_5+A^{1}_1E^{1}_6
118 out of 119
Subalgebra type: \displaystyle A^{1}_5+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_5 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_5: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, (0, 0, 0, 0, 0, -1): 2, \displaystyle A^{1}_1: (1, 0, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 38.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}, \displaystyle g_{6}, \displaystyle g_{-1}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}, \displaystyle g_{-6}, \displaystyle g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0 & 0\\ 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0 & 0\\ 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{6}}\oplus V_{\omega_{3}+\omega_{6}}\oplus V_{\omega_{1}+\omega_{5}}
Made total 697 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra E^{1}_6E^{1}_6
119 out of 119
Subalgebra type: \displaystyle E^{1}_6 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle D^{1}_5 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle E^{1}_6

Elements Cartan subalgebra scaled to act by two by components: \displaystyle E^{1}_6: (1, 2, 2, 3, 2, 1): 2, (0, 0, -1, 0, 0, 0): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, (0, 0, 0, 0, 0, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 78.
Negative simple generators: \displaystyle g_{-36}, \displaystyle g_{3}, \displaystyle g_{2}, \displaystyle g_{4}, \displaystyle g_{5}, \displaystyle g_{6}
Positive simple generators: \displaystyle g_{36}, \displaystyle g_{-3}, \displaystyle g_{-2}, \displaystyle g_{-4}, \displaystyle g_{-5}, \displaystyle g_{-6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & -1 & 0 & 0 & 0\\ 0 & 2 & 0 & -1 & 0 & 0\\ -1 & 0 & 2 & -1 & 0 & 0\\ 0 & -1 & -1 & 2 & -1 & 0\\ 0 & 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & -1 & 0 & 0 & 0\\ 0 & 2 & 0 & -1 & 0 & 0\\ -1 & 0 & 2 & -1 & 0 & 0\\ 0 & -1 & -1 & 2 & -1 & 0\\ 0 & 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{\omega_{2}}
Made total 697 arithmetic operations while solving the Serre relations polynomial system.
Nilpotent orbit computation summary.
Calculator input for subalgebras load.